
YACOP - Readme file

Maike Tech

Contents

1 General 1

2 System requirements 1

3 Additional scripts 2

4 Running YACOP 2
4.1 Parameters during invocation of Yacop . 2
4.2 The ini-file . 3

5 Input format 4
5.1 FASTA or multiple-FASTA . 4

6 Output formats 5
6.1 PREFIX.sum out . 5
6.2 PREFIX.tbl . 5
6.3 PREFIX.fasta . 6
6.4 Other files in the output directory . 6

7 Modification of the source code 6
7.1 Adaptation to multi- or single-processor machines . 6
7.2 Adding new output modes . 7
7.3 Altering output format . 8

8 Integration of other prediction tools 8
8.1 Invocation of your tool . 8
8.2 Handling the output of your tool . 9

9 Links 9

1 General

The metatool Yacop [1] generates a prediction, which is based on the output of existing gene
finding programs like Glimmer or Orpheus. In present Yacop supports the combination of Crit-
ica105b [5] (with wublast or NCBI blast), Glimmer2.02 [3] or Glimmer2.10 [2] (with RBSfinder
[4]), Orpheus [6] (with dps [7]) and ZCurve1.0 [8]. However, it’s possible to extend Yacop and
integrate additional tools (see section 8, p.8), for its source code is available. The current version
of Yacop is realized in Perl (v.5.6.1). Its implemented and tested under RedHat Linux v2.4.18
and Debian Linux v2.6.5.
Yacop expects input in FASTA (starting with script combinate) or multiple-FASTA format (start-
ing with script combinate multi). Some of the methods used internally rely on nucleotide, codon,
or oligomer frequencies that have to be derived from the input therefore the minimal length of the

1

input sequence is 50 kB. When started with option concat, even shorter contigs can be analyzed,
if sufficient fragments of the sequence are available (given as multiple-FASTA).
The starter script combinate automatically triggers the gene finding programs and evaluation of
their predictions. That prerequisites the correct installation of the tools (Critica, Glimmer etc.).
In case of problems concerning the individual gene finding programs, please consult the respective
readme files. For ZCurve, Critica and Orpheus it is as well possible to post an output file as to
start the program 1. The paths directing to the tools should be set in the central ini-file of Yacop
(see section 4, p. 2).

2 System requirements

Most gene prediction tools are implemented in Perl, C or C++. Therefore, these programming
languages should be available on your system. If you don’t use default paths or default compilers,
the tools as well as the sources of Yacop should be edited individually.
Some gene prediction tools (Critica, Orpheus), used by Yacop rely on database searches and
statistical analysis, for that it is not recommendable to install i on an normal pc. Unless you would
like to use Yacop to combine the output of Glimmer and ZCurve, which are fast and require far
less capacity.
The following programming languages have to be available on your system:

1. Perl5.6.1 or higher (should be installed in /usr/bin/perl)

2. BioPerl.3 or higher

3. C and C++ (default compiler gcc) needed for Glimmer, Orpheus, dps and Critica

Yacop can be used on multi-processor systems running PBS (Portable Batch System) as well as on
single processor systems. In this case, the programs are executed sequentially. For the adaptation
of the Yacop source code to different system architectures, see section 7, p. 6.

3 Additional scripts

Some additional conditions have to be fulfilled: The scripts check qstat, gl2rbs, separate and
toUp need to be available in your PATH. You can either copy the scripts to your bin directory or
set respective links there. Another possibility is to integrate the whole Yacop home directory into
your PATH. If you would like to use the scripts manually, have a look at the comments. When you
just type the name of a script in the command line, it will give you a line how to use it correctly.

- gl2rbs is needed for conversation of Glimmer output to input of RBSfinder.

- toUp converts lowercase sequences to Critica-compatible uppercase version. If you start Ya-
cop with combinate multi invocation of toUp occurs automatically, unlike during startup
of combinate, where you should trigger the script manually (if your sequence is composed
of lowercase characters). The uppercase sequence is written to the file FASTAfile_uc (after
usage with combinate multi this file will be removed).

- check qstat is only needed if you use Yacop on multi-processor machines. It checks out
current state of the subprocesses. In the script the monitoring utility qstat is called, which
is part of the OpenPBS.

1This is only integrated in the last version of Yacop (since June 2004). The feature to post Critica or Orpheus
output to Yacop was added, because of the long runtime of this programs for big genome projects. In the case of
ZCurve a Linux version was not available at the time of the first implementation. For older versions the output can
be generated under Windows (or Linux) and then be posted manually during invocation to the script combinate (not
possible for combinate multi).

2

- separate will be invoked in -concat mode. It separates the output of *.tbl or .sum out to
the subsets of the concatenated contigs. The individual results will be written to ~/data/long-
time/contigs tbl/ nr.NAME or ~/data/longtime/contigs sum/ nr.NAME. The suffix NAME
corresponds to the contig name. The invocation of separate is triggered by combinate.
By default, only the mode-dependent results in *.tbl will be separated. If you like to use
separate on the whole results (mode- and length independent), which are stored in .sum out,
you should comment respective code in.

4 Running YACOP

4.1 Parameters during invocation of Yacop

There are two sets of parameters to be considered. First the required parameters: your sequence
in FASTA format, the ini-file and a prefix for your organism. These should be given in exact
order (like in the example). Second the optional parameters (given in []): the flags for the tools
to use and the flags for special modes (concat and verbose). Here the order doesn’t matter.
The script combinate should be called with a statement like:

combinate gene.fasta ini-file PREFIX [-gr/-gc -c [critica.out] -o [orpheus.out]
-gb gene.gbk -z [zcurve.pred] -v -concat]

(The [] are only added to denote optional arguments and should be left out in a real call.)
The parameters for combinate multi are alike:

combinate_multi multi_fasta ini-file PREFIX [-c -o -gr/-gc -z -gb file.gbk -v
-concat]

Note, tthat you should type ’perl ~/YACOP/combinate ...’ if you didn’t add the Yacop home
directory to your PATH variable.
The filename of the FASTA file must be given with the absolute path. The term PREFIX is
synonym for a prefix naming your organism. It is used to compose names of result-files and may
be formatted according to the regular expression /^R[A-Z]{2,3}/.
The parameters -gr, -c, -z and -o tell Yacop which tools to use. The parameter -c acti-
vates invocation of Critica, if no Critica output file (normally *3.cds) is given (not possible for
combinate multi). -gr activates Glimmer plus RBSfinder. Instead of -gr the parameter -gc can
be given. This triggers Glimmer with RBSfinder like -gr, meanwhile for Glimmer training Critica
output is used ([9]). This requires, that Critica should be also started or Critica output should be
given (-c). -o triggers the invocation of Orpheus in combination with dps, if no Orpheus output
file is given (not possible for combinate multi). With the parameter -z ZCurve will be started, if
no ZCurve output file is added (not possible for combinate multi).
The parameter -gb must be set together with the path to a GenBank file. This option allows to
check the performance of Yacop and the integrated tools, by comparing the annotation deposited
at GenBank with the output generated by the programs (see section 6, p. 6.
The Parameter -v is for verbose mode (writing information of ini-file to properties.inf). -concat
starts YACOP in concatenation-mode (see section 5.1, p. 4).
Yacop copies the resulting output to a directory ~/data/longtime (located at the current home
directory), see section 6, p. 5.

Summery of parameters:

-c triggers invocation of Critica or posting Critica output, if a file is added (*.cds)

-gr triggers invocation of Glimmer/RBSfinder

3

-gc triggers invocation of Glimmer/RBSfinder, with Critica-output as training set ([9]). Requires
Critica output! So Critica should be invoked (-c) or Critica output should be given (-c
*.cds)

-o triggers invocation of Orpheus or posting Orpheus output, if a file is added

-z posting ZCurve output or starting ZCurve, if you only type -z without adding a file

-gb posting a GenBank file

-v printing properties to file (verbose)

-concat run combinate in concatenation-mode (see section 5.1, p. 4)

4.2 The ini-file

The ini-file (example is given in YACOP/GenePred.ini) contains all parameters required by the
tools, the path to their home directories and parameters needed by the Perl program meta pred.pl.
Additionally a short description of their function and an example is given. All parameters can be
set by using this central repository. For a more detailed description of the individual parameters
of the tools, you should have a look at the respective readme-files.
The parameter mode defines how Yacop merges the individual predictions and how to select the
gene starts. Possible settings are:

- crit_orp_gl combines the predictions of Critica with the predictions made by both Glimmer
and Orpheus. For the prediction of the startcodons the output of Critica gets the highest
priority. If an orf is not predicted by Critica, but by Orpheus and Glimmer, the Orpheus
output is favored.

- crit_zc_gl outputs Critica predictions with the intersection of ZCurve and Glimmer, Critica
starts will be preferred, else-wise the start position predicted by ZCurve is taken into account.

- zc_crit_gl combines Critca predictions with the intersection of ZCurve and Glimmer pre-
dictions. Starts of ZCurve are favored where possible, else-wise Critica starts are taken.

- crit_zc_gl_orp combines the predictions of Critica with the intersection of the predictions
of Glimmer, ZCurve and Orpheus. Start coordinates are taken from Critica output, otherwise
for predictions not found in Critica output the prediction of ZCurve is taken.

- zc_crit_gl_orp combines the predictions of Critica with the intersection of the predictions of
Glimmer, ZCurve and Orpheus. For the prediction of startcodons, in this mode the ZCurve
output is favored. If a predicted orf is not found in the ZCurve output, the Critica start
coordinate is taken.

- zc_gl outputs intersection of predictions of ZCurve and Glimmer with ZCurve start.

- gl only glimmer output is considered.

In order to implement additional modes, the subroutine eval start mode(HASH) has to be modified
(see section 7, p. 6).
Additionally a parameter -minlength can be set in the ini-file. This causes the tool to reject all
predictions shorter than given number (denoted in BP). This limitation obtains for all predictions
except such made by Critica. For ZCurve also the specific call (i. e. the name of the executable)
should be set. If Glimmer should be trained with Critica output, it is possible to confine the
predicted genes that will be considered in the training by p-Value (gr crit maxpval) and by
length (gr crit minlen).

4

5 Input format

5.1 FASTA or multiple-FASTA

The input format should be of type FASTA or multiple-FASTA. The script combinate handles
the triggering of the individual tools. The script combinate multi splits multiple-FASTA input
into several FASTA-files. Each of these temporarily generated files will then be processed by an
instance of combinate, created by combinate multi. If started in concat mode combinate multi
concatenates the sequence fragments in given multiple-FASTA file and posts it as one sequence
to combinate. All predicted coding regions traversing a concatenation site are removed from the
result and stored to file meta pred.msg in resp. output directory.
Example for the FASTA format:

>AP000398_Buchnera_sp._APS_complete_genome.

TTATCCACAGATTTGTTCTTTACTAATAATAATAGTAATTATTATTTTTTATTTTTTTTATTTTTTT

GAATTTAAACCTTAAAGAAAAGAAAAAGATCTTTTTTTTAAGATATTATGTTTTTAAGATTAACATG

TGTTATCTTGAATAAAATATTAATACTATTTGAATATTTTTAAATTTTTAAAAGGTTTTTATATGTT

combinate accepts only sequences composed of uppercase characters. This is due to limitations
imposed by some of the tools that do not work for lowercase sequences. combinate multi does not
have this limitation. The script toUp is called before passing sequence files to combinate. toUp
(see section 3, p. 2) converts the input sequence to an uppercase version.
The annotation of a contig should start with > (FASTA convention) and should not exceed one
line. Note that some of the tools used for prediction do not accept sequence ids which are too long
or contain white spaces. E. g. Critica uses the id to form the names of the output files. If the
names contain special characters or are too long this may cause Critica to crash without any error
message.

6 Output formats

Yacop stores results in the directory ~/data/longtime. Where longtime corresponds to the time of
invocation of Yacop in long format. If you are not contend with this, you can change the output
path in the script combinate (see variable output dir).
Each prediction of Yacop consists of three basic output files:

6.1 PREFIX.sum out

The file PREFIX.sum out contains all predictions made by the tools integrated in Yacop. The file
can be regarded as a table. Each line describes one predicted orf. The landmarks used to organize
the output are the stopcodons occurring in the sequence. The first column contains the positions of
the stopcodons (sorted in ascending order), given by the first nucleotide of the codon. The second
column lists the reading frame of the gene (comp). The following columns contain the output of
the different tools. Each start coordinate is defined as the first nucleotide of startcodon.
Start positions given for Glimmer are those generated by RBSfinder (Glimmer/RBSfinder). RBS-
finder alters the initial predicted start of Glimmer by shifting them up or downstream if the results
differ. The number, given in column 3 is the offset, RBSfinder has introduced for the start position.
In brackets the amount of the shift from the position Glimmer has predicted is denoted. A positive
number indicates a downstream shift, a negative correspondingly an upstream shift. The output
for Critica is the position of the startcodons and a p-value, rating the quality of the prediction.
For Orpheus, only the predicted start position is given. For ZCurve the predicted start will be
given with a score (like Critica score, rating the prediction of ZCurve). In evaluation mode, i.e. the
name of a GenBank file is given during startup, the start position and the annotation as deposited

5

in the file are added to the output.
Example for a file of type PREFIX.sum out (with all integrated outputs):

2081 F 164 (33) 197 6.82e-147 164 197 0.18091 197 glucose inhibited divis

2771 R 2924 (-) - - - - - -

3100 F 2278 (-) 2278 3.08e-20 2278 2278 0.22193 2278 ATP synthase A chain

3376 F 3139 (-) 3139 2.27e-07 - 3139 0.25229 3139 ATP synthase C chain

3980 F 3497 (-) 3497 8.36e-16 3497 3497 0.27178 3497 ATP synthase B chain︸ ︷︷ ︸
stop comp

︸ ︷︷ ︸
Glimmer/RBSf.

︸ ︷︷ ︸
Critica

︸ ︷︷ ︸
Orpheus

︸ ︷︷ ︸
ZCurve

︸ ︷︷ ︸
GenBank

6.2 PREFIX.tbl

The file PREFIX.tbl contains a gene table. The genes compiled in this file are extracted from the
sets of genes predicted by the individual tools. The arrangement of genes is depending on the mode,
which has to be set in the ini-file. The default mode (as given in example ini-file, see section 4, p.
2) is crit zc gl. For each predicted coding region, one line of output is generated. The first column
contains the id of the gene. The id results from the given PREFIX and a number incremented
automatically. The id is formatted according to the regular expression /^R([A-Z]{2,3})\d{5,6}/.
In addition, the name of the contig and the coordinates of the gene are added.
NOTE: 3’-end is given exclusive stopcodon, 5’-end is inclusive startcodon. An example for the
format of PREFIX.tbl:

RBU000001 AP000398_Buchnera_sp._APS_complete_genome._197_2080

RBU000002 AP000398_Buchnera_sp._APS_complete_genome._2278_3099

RBU000003 AP000398_Buchnera_sp._APS_complete_genome._3139_3375

RBU000004 AP000398_Buchnera_sp._APS_complete_genome._3497_3979

6.3 PREFIX.fasta

The file PREFIX.fasta consists of the amino acid sequences (inclusive startcodon) of all predicted
genes in PREFIX.tbl. Each sequence is annotated with the id according to the entries deposited in
the tbl-file.

>RBU000001

MFNLRNFDVIVVGAGHAGTEAAMASSRMGCKTLLLTQKISDLGALSCNPAIGGIGKSHLVKEIDAL

GGMMAKAIDYSGIQFRILNSSKGPAVRSTRAQADKILYHETVKKILKKQNNLLILEAEVKDLIFKN

YSVVGVLTQNEINFYSRSVVLAAGTFLGGKIHIGLKSYSAGRIGDKSAIDLSVRLRELSLRVNRLK

TGTPPRIDINTVNFNNLLIQNSDTPVPVFSFMGNVSHHPKQIPCYLTHTNEKTHEIIRKNLDKSPI

YTGFLKGLGPRYCPSIEDKIVRFPDRKSHQVFLEPEGLSSIKVYPNGISTSLPIEVQEQIVASIKG

LEKSKIIRPGYAIEYDFFDPKDLNLTLESKLIKGLFFAGQINGTTGYEEAASQGLLAGLNAALSSK

NTEGWFPRRDQAYLGVLIDDLTTQGTEEPYRMFTSRAEYRLSLREDNADLRLTEIGRKLGLVNDSR

WIRYNQKVLNIQTEMNRLKKNKISPISPDADILKKLYNINLIKEISMSELLKRPQIRYQDLQSLES

FRTGIVDLEAIGQIENEIKYAGYIKRQSEEIERHLKNENTFLSSIYDYNKIRGLSSEVVKKLNDYK

PISIGQASRISGITPAAISILLIHLKKESYKHTL

6.4 Other files in the output directory

In the output directory you will find several more files. Most of these are output files of the
tools, Critica, Glimmer, ZCurve and Orpheus (see table ’Output files’). You will also find a file
meta pred.msg. This file contains error messages and predicted genes, that were removed from
the resultset in concat mode (because they cross concatenation sites). If you started Yacop in
verbose mode (option -v) the file properties.inf will be added. This file contains the parameter
composition of this invocation of Yacop (set in the .ini file). The files named sh clongtime.sh
and sh olongtime.sh are the invocation scripts of Critica and Orpheus if Yacop is startet on

6

multi-processor mashines using PBS. longtime denotes the instantiation time of resp. Nudge object
in long format (set in *Nudge.pm, e. g. CritcaNudge.pm). In this case the files sh *longtime.o
contain all messages printed to STDOUT and sh longtime.e all messages printed to STDERR by
Critica (*=c) or Orpheus (*=o).

Table 1: Additional Yacop files
file description
meta_pred.msg error messages, removed genes in concat mode
properties.inf configuration of properties for this run (verbose mode)
sh_clongtime.sh qsub starterscript for Critica
sh_olongtime.sh qsub starterscript for Orpheus
sh longtime.o STDOUT messages of batch processes (i. e. Critica or Orpheus)
sh longtime.e STDERR messages of batch processes (i. e. Critica or Orpheus)

Table 2: Output files of the integrated tools
Tool script output file
Glimmer long-orfs gl_PREFIX.orfs, gl_PREFIX.msg_lo

extract gl_PREFIX.extract
build-icm gl_PREFIX.model
glimmer2 gl_PREFIX.out, gl_PREFIX.msg_gl

RBSfinder gl2rbs PREFIX_tmp.gl2rbs
gl_PREFIX.rbs_out, gl_PREFIX.rbs_msg

Critica blast-contigs PREFIX.blast
make-blastpairs PREFIX.blast.pairs
scanblastpairs PREFIX.triplets
iterate-critica PREFIXnr.cds (nr ≡ iteration)

Orpheus dps orph_PREFIX.dps
orpheus2 (-wcu) orph_PREFIX.nuc_usage
orpheus2 (sure oder rcu) NAME.orfaln, NAME.orfnuc, NAME.orfprot
starter orph_PREFIX.weights

7 Modification of the source code

7.1 Adaptation to multi- or single-processor machines

The current version of Yacop can be startet using PBS (Portable Batch System, see 2, p. 1)
for Critica and Orpheus. Glimmer and ZCurve are always started as non-batch-processes. The
invocation of the batch processes occures with the command qsub(1B), which is provided in the
OpenPBS package. The script combinate calls the starter objects (inheriting from Nudge.pm, e.
g. CriticaNudge.pm) to create the scripts for submission via qsub and triggers the invocation of
the scripts. The objects extending Nudge.pm also provide subroutines to start the subprograms
sequentially.
In the source code of combinate the line

$critica->start_qsub_all();

triggers invocation of Critica as batch process. If Critica shall be started as non-batch process, this
line should be commented out and the following lines should be commented in:

7

$critica->start_blastcontigs();
$critica->start_makeblastpairs();
$critica->start_scanblastpairs();
$critica->start_iteratecritica();

The code adaption for Orpheus looks quite similar.
Running as batch process:

$orpheus->start_qsub_all();

Running as non-batch process:

$orpheus->start_starter(OrpheusNudge->nuc());
$orpheus->start_dps();
$orpheus->start_orpheus2(OrpheusNudge->wcu());
$orpheus->start_orpheus2(OrpheusNudge->sure());
$orpheus->start_starter(OrpheusNudge->weights());
$orpheus->start_orpheus2(OrpheusNudge->rcu());

For the usage of qsub, additionally the script check qstat is provided. During invocation of
check qstat the name of a qsub-script has to be given as a commandline parameter (this is done
automatically by combinate). It is used to control the execution of the respective subprocess. If
you are not using a bash (borne-again shell) on your system, the scripts check qstat and the
variable Nudge::BASH CALL (in Nudge.pm) should be modified.

7.2 Adding new output modes

The output modes of Yacop are implemented in meta pred.pl. To add new modes you should
declare a global variable (like $M CRIT ZC GL) to store the name of the new mode. In the routine
eval start mode(HASH), you should add an if-clause with the code to execute, if your mode
is set (i. e. which predicted start should be returned). This routine is called by the routine
quick results(ResultSet), which composes the reduced result object QuickResults, containing
only start and stop of a predicted gene respective to your mode (used to write the files PREFIX.tbl
and PREFIX.fasta). If the new mode is set in the ini-file (with the name you stored in the global
variable, see above), it will be automatically set by combinate and executed by meta pred.pl.
Additionally you should add the mode to respective if-clause in the routine write all(Data-
Handle), which is called by output all(ResultSet) and writes all predictions of the tools used in
your mode to PREFIX.sum out. If you intend to add the predictions of a new tool to the output of
Yacop you should add a new elsif-clause to that routine, in which the predictions of your tool
(called MyTool in the example) will be written to STDOUT like:

elsif ($MODE eq $M_ZC_GL_MYTOOL){
printf "%7s %s %7s (%3s) %7s %5s %5 %s %s\n",
$val->{$STOP}, $val->{$COMPL}, $val->{GlimmerRBSParser->type},
$val->{(GlimmerRBSParser->type)."S"}, $val->{ZCurveParser->type},
$val->{(ZCurveParser->type)."S"}, $val->{(MyToolParser->type)},
$val->{GenebankParser->type}, $val->{$GBK_ANNO};

}

7.3 Altering output format

If you require other formats you should change one of the writing routines or create a new one
and add the functioncall to the main program of meta pred.pl. If you do so, note that the object
QuickResult only contains the predictions respective to current mode and minlength, meanwhile
ResultSet contains all.
Current output- and related routines in meta pred.pl are:

8

- output_all(ResultSet) calling write_all(HASH)
(writing PREFIX.sum_out)

- write_table(QuickResults) calling eval_start_mode(HASH)
(writing PREFIX.tbl)

- write_multiple_fasta(QuickResults) calling eval_start_mode(HASH)
(writing PREFIX.fasta)

Additionally, predictions which are discarded in concat mode are written to STDERR in routine
trim results(ResultSet). Error messages of meta pred.pl are redirected to the file meta pred.msg
in combinate::start metapred().

8 Integration of other prediction tools

8.1 Invocation of your tool

The invocation of your tool has to be added to the skript combinate. You should add a flag to
the hash %arg, which corresponds to the commandline parameter of combinate you chose for your
tool. Additionally a variable to hold the starter object of your tool (like $glimmer rbs) should be
declared in the script. The parameters needed for your tool (e. g. home directory etc.) should be
added to the ini-file. In the routine eval args the commandline parameters of combinate will be
evaluated. For the invocation itself you should write an object extending Nudge.pm comparable to
GlimmerNudge.pm and you should add the incarnation of this object with the necessary arguments
to eval args like:

$glimmer_rbs=GlimmerNudge->new($arg{FASTA_FILE}, $output_dir, $arg{PREFIX})}

You also should add the call of respective subroutines to combinate like:

$glimmer_rbs->start_glimmer();

8.2 Handling the output of your tool

For parsing the output of your tool, a parser according to GlimmerParser.pm should be imple-
mented and integrated to meta pred.pl. For the invocation of meta pred.pl, the commandline
parameter invoking your tool should be set in a variable in meta pred.pl like:

my $F_GLIMMER_RBS = ’gr’;

The invocation of meta pred.pl is triggered by combinate. For that you should add the parameter
for your tool to the hash %orf check commm, which is used in the routine start metapred() (or
script metapred() (if meta pred.pl is started as batch process) to create the commandline call
of meta pred.pl like:

$orf_check_comm{GLIMMER_RBS}=" ".$arg{GLIMMER_RBS}." ".$glimmer_rbs->get_resultoutput();

In start metapred() you should add the new value of %orf check comm to the call in start metapred().
You also should add a new output mode to integrate the predictions of your tool (see 7.2, p. 7).

9 Links

Critica1.05 http://geta.life.uiuc.edu/˜gary/programs/CRITICA/

wublast http://blast.wustl.edu/

9

http://geta.life.uiuc.edu/~gary/programs/CRITICA/
http://blast.wustl.edu/

NCBI blast http://www.ncbi.nih.gov/BLAST/

Glimmer2.01 http://www.tigr.org/software/glimmer/

Glimmer2.10 http://www.tigr.org/software/glimmer/

RBSfinder http://www.tigr.org/software/

Orpheus http://pedant.gsf.de/orpheus/

dps ftp://cs.mtu.edu/pub/huang/

ZCurve1.0 http://tubic.tju.edu.cn/Zcurve B/

Perl5.6.1 http://www.perl.com/

BioPerl1.3 http://bioperl.org/

PBS http://www.openpbs.org/

References

[1] Tech M., Merkl R. 2003. Yacop - Enhanced Gene Prediction Obtained by a Combination
of Existing Methodes. In Silico Biology in press.

[2] Salzberg S., Delcher A., Kasif S., White O. 1998. Microbial gene identification using
interpolated Markov models. Nucleic Acids Res. 26:544-548.

[3] Delcher A., Harmon D., Kasif S., White O., Salzberg S. 1999. Improved microbial
gene identification with GLIMMER. Nucleic Acids Res. 27:4636-4641.

[4] Suzek B.E., Ermolaeva M.D., Schreiber M., Salzberg S. 2001. A probabilistic method
for identifying startcodons in bacterial genomes. Bioinformatics 17:1123-1130.

[5] Badger J., Olsen G. 1999. CRITICA: Coding Region Identification Tool Invoking Compar-
ative Analysis. Mol. Biol. Evol. 16(4):512-524.

[6] Frishman D., Mironov A., Mewes H.-W., Gelfand M. 1998. Combining diverse evidence
for gene recognition in completely sequenced bacterial genomes. Nucleic Acids Res. 26:2941-
2947.

[7] Huang X. 1996. Micorb. Compar. Genomics 1: 281-291.

[8] Guo F.-B., Hou H.-Y., Zhang C.-T. 2000. ZCURVE: a new system for recognizing protein-
coding genes in bacterial and archaeal genomes. Nucleic Acides Res. 31: 1780-1789.

[9] A. C. McHardy, A. Groesmann, A. Pühler, F. Meyer 2004. Development of joint
application strategies for two microbial gene finders. Bioinformatics 20:1622-1631.

10

http://www.ncbi.nih.gov/BLAST/
http://www.tigr.org/software/glimmer/
http://www.tigr.org/software/glimmer/
http://www.tigr.org/software/
http://pedant.gsf.de/orpheus/
ftp://cs.mtu.edu/pub/huang/
http://tubic.tju.edu.cn/Zcurve_B/
http://www.perl.com/
http://bioperl.org/
http://www.openpbs.org/

	General
	System requirements
	Additional scripts
	Running YACOP
	 Parameters during invocation of Yacop
	The ini-file

	Input format
	FASTA or multiple-FASTA

	Output formats
	PREFIX.sum_out
	PREFIX.tbl
	PREFIX.fasta
	Other files in the output directory

	Modification of the source code
	Adaptation to multi- or single-processor machines
	Adding new output modes
	Altering output format

	Integration of other prediction tools
	Invocation of your tool
	Handling the output of your tool

	Links

