
Gene Prediction with a Hidden Markov Model

Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen

vorgelegt von

Mario Stanke

aus Witzenhausen

Göttingen, 2003

D7

Referent: Prof. Dr. Stephan Waack

Korreferent: Prof. Dr. Burkhard Morgenstern

Tag der mündlichen Prüfung: 21.01.2004

Contents

Abstract 3

Acknowledgments 5

Abbreviations 6

1 Introduction 7

2 Generalized Hidden Markov Models 10

2.1 Notation . 10

2.2 Definition of a Generalized Hidden Markov Model 10

2.3 Viterbi Algorithm . 13

2.4 Forward Algorithm . 15

2.5 Sampling Algorithm . 17

3 A Generalized Hidden Markov Model for Genomic Sequences 19

3.1 History of GHMMs for Gene Prediction . 19

3.2 Definition of the GHMM AUGUSTUS . 20

3.2.1 States and Transitions . 21

3.2.2 Emission Distributions . 23

Length distributions . 24

Sequence distributions . 31

3.3 Statistics of Selected Submodels . 35

3.4 GC Content Dependent Training . 39

3.5 Variants of the Model . 40

4 Further Analysis 43

4.1 A-Posteriori Probabilities and Sampling . 43

4.1.1 A-Posteriori Probability of the Predicted Gene Structure 43

4.1.2 A-Posteriori Probability of the True Gene Structure 44

4.1.3 Sampling Gene Structures . 46

iii

CONTENTS 1

4.2 Improving State Models Can Worsen the Overall Model 47

5 Using Extrinsic Information – AUGUSTUS+ and AGRIPPA 52

5.1 The Methods of Other Programs . 53

5.2 Extrinsic Information about Genes . 55

5.2.1 The Program Agrippa . 55

Using protein database matches . 56

Using EST database matches . 56

Combining EST with protein database matches 57

5.2.2 Types of Extrinsic Information . 57

5.3 Extended Model - AUGUSTUS Takes Hints 58

5.3.1 Goals of the Modeling . 58

5.3.2 The extended Emission Alphabet . 60

5.3.3 The extended Emission Distribution 62

Relevance of the length of hints . 65

Relevance of the BLAST e-value . 66

Choice of the set of grades . 68

Estimating r+j and r−j . 69

5.3.4 Impact of the Hints on the Prediction 73

6 Implementation 77

6.1 The Programs . 77

6.2 Space and Running Time . 77

6.3 Output of AUGUSTUS . 79

6.4 Web Server . 81

7 Results of AUGUSTUS 83

7.1 Test Sets . 83

7.2 Training Sets . 84

7.3 Accuracy . 85

7.3.1 Comparison to Other Programs . 85

AUGUSTUS . 86

AUGUSTUS+ . 88

7.3.2 Comparison to Variants of AUGUSTUS 90

7.3.3 Discussion . 92

Bibliography 101

Für meine Eltern

Abstract

Annotation of the large and rapidly increasing amount of genomic sequence data requires

computational tools for finding genes in DNA sequences. This thesis presents a computa-

tional method for finding protein-coding genes encoded in DNA sequences of eukaryotes

(plants and animals). It consists mainly of two parts.

One major part of the thesis is the introduction of a so-called generalized Hidden

Markov Model (GHMM) for eukaryotic genomic sequences. This model, called AUGUS-

TUS, is a probabilistic model of a DNA sequence with the gene structure underlying the

sequence. It defines a probability distribution on the set of all possible pairs of a DNA

sequence and its annotation of protein-coding regions. Genes in an input DNA sequence

can be uncovered by finding the gene structure which is most likely in the probabilistic

model given the input DNA sequence. The most likely gene structure of the input DNA

sequence is searched by a computer program, which can be done both exactly and effi-

ciently because of the relatively simple dependency structure of the distribution defined

by a GHMM. However, the most likely gene structure with respect to the model is not

necessarily correct. In order for the model to fit well the actual distribution of true se-

quences and their annotations several new methods have been applied. A GHMM for gene

prediction contains probabilistic state models for different functional parts of the genomic

sequence, such as translational and splicing signals and coding regions. For the splice

sites new probabilistic submodels are introduced. A method is used to better estimate the

parameters of the model depending on the average base frequency. Further, the following

issue is addressed. A GHMM may model the length distribution of certain structural parts

of the sequence, such as introns. The disadvantage of the existing procedures was that

they either caused prohibitively long running times or they modeled the true length dis-

tribution inadequately. An approach presented here allows to approximate a given length

distribution by an arbitrary initial part and a geometric tail at relatively low computa-

tional cost. Furthermore, this thesis presents an example that shows that incorporating

a state model of a GHMM, that is a better probabilistic model for the true distribution,

can worsen the prediction accuracy of the overall GHMM.

A computer program based on this model has been tested on DNA sequences with

known annotation from human and the fruit fly Drosophila melanogaster. The accuracy of

the predictions compare favorably to that of other well known, established gene prediction

programs.

The second major part of the thesis addresses insecure external information about the

gene structure and presents a method for integrating external information into a GHMM

for gene prediction. With the increasing number of sequenced species and an increasing size

of protein and EST databases the relevance of so-called extrinsic gene prediction methods

3

becomes all the more important. Extrinsic gene prediction methods use external evidence

about the DNA sequence whose gene structure needs to be found. This external evidence

can, as employed in this thesis, be a local similarity of the input DNA sequence to a known

EST sequence or a local similarity of the translated DNA sequence to a known protein

sequence. But also a second DNA sequence with unknown gene structure can be used to

infer knowledge about the gene structure of the input sequence if this second sequence

codes for a similar protein of a different species in a suitable evolutionary distance. This

thesis presents a flexible model for integrating various types of external information into

a GHMM for gene prediction.

The GHMM AUGUSTUS is extended to a new GHMM AUGUSTUS+ which is a

probabilistic model of all possible triplets formed by a DNA sequence, its annotation, and

external information about the sequence. The gene prediction program then finds the

most likely annotation given both the input DNA sequence and the external evidence.

It accounts for the fact that such external evidence can be misleading. The parameters

corresponding to the distribution of the external information can be easily estimated. This

leads to a naturally justified increase in likelihood of gene structures respecting the external

information compared to the likelihood in the previous model. The method allows to make

use of evidence about a range of the DNA sequence, e.g. evidence that a certain range of the

sequence is protein-coding, without preferring gene structures that only ‘partially respect’

that evidence over those which do not respect at all the evidence. Another advantage of the

method presented here, compared to ad-hoc methods for integrating external information

into existing programs, is that the underlying theory of GHMMs still applies to the model.

Experiments with AUGUSTUS+ show that the use of extrinsic information coming from

EST database searches can significantly improve the prediction accuracy of gene prediction

programs when combined with protein database searches.

4

Acknowledgments

I am much obliged to my supervisor Professor Stephan Waack for his support throughout

the last three years. He has guided me to this thesis topic which later turned out to be very

motivating and promising. In the numerous discussions with him I got many helpful hints

and ideas. He has coordinated the diploma thesis of Oliver Schöffmann and my thesis so

our collaboration became fruitful. I return thanks to Oliver Schöffmann for providing me

with the essential input to AUGUSTUS+ by writing AGRIPPA and following my many

request for trying out different settings on many data sets. Thanks goes to the Institut

für Mikrobiologie und Genetik for the computer resources to run AGRIPPA. I am grateful

to Emmanouil Stafilarakis for writing the input modules of AUGUSTUS and a useful

floating point type and laying of the foundation stone to the program AUGUSTUS. Many

thanks to Rasmus Steinkamp, who has set up a web server and written a web interface

for AUGUSTUS. Special thanks belongs to Oliver Keller, for discussing problems with me

and proofreading the draft. I also thank Geneviève Macias for proofreading the abstract.

I am grateful to Professor Burkhard Morgenstern for making it possible that I could finish

this thesis while working in his work group and for proofreading a paper deriving from

this thesis.

5

Abbreviations

ASS acceptor splice site

bp base pairs

cDNA complementary DNA, a DNA copy of an mRNA molecule

DNA deoxyribonucleic acid, the genetic material for all cellular life forms

DSS donor splice site

EST expressed sequence tag

GFF General Feature Format

GHMM generalized Hidden Markov Model

GHz giga hertz

GOBICS Göttingen Bioinformatics Compute Server

HMM Hidden Markov Model

IMM interpolated Markov Model

Kb kilo bases = 1000 bases

MB mega bytes

Mb mega bases = 1000000 bases

RNA ribonucleic acid

WWAM windowed weight array model

#(. . .) the number of ...

|A| the size of set A

6

Chapter 1

Introduction

A DNA sequence can be represented by a word over the alphabet with the four let-

ters A,C,G and T standing for the nucleotides or bases adenine, cytosine, guanine and

thymine. Over the past few years the DNA sequences of many organisms have been deter-

mined. Two types of organisms can be distinguished. Eukaryotes like animals and plants

are organisms whose cells contain membrane-bound compartments. Prokaryotes are or-

ganisms whose cells lack extensive internal compartments, namely bacteria and archae.

So far, 21 eukaryotic genomes have been sequenced and their sequence published (see

http://igweb.integratedgenomics.com/GOLD/). Examples are the bakers yeast (1997),

the worm Caenorhabditis elegans (1998), the fruit fly Drosophila melanogaster (2000), the

plant Arabidopsis thaliana, the human (2001), the malaria parasite Anopheles gambiae

(2002) and the mouse (2002). 360 additional eukaryotic genome sequencing projects are

currently under way. For prokaryotes these figures are even higher.

These sequencing efforts generate a large amount of raw data as the DNA sequence of a

eukaryote is often longer than a hundred million base pairs. The genome of humans has

approximately a size of 3.2 ·109 base pairs. The annotation of these sequences by biological

means can by far not keep pace with the speed with which the data is accumulated and

therefore computational tools to find genes are needed. Locating the genes is helpful and

often even a prerequisite for further analysis such as the characterization of the function

of the gene product, determining the phylogeny of different species or understanding gene

regulation.

But the problem of finding genes in a genomic DNA sequence is difficult and – despite

extensive efforts – has not been solved yet satisfactorily. The accuracy of current gene

prediction programs is not high enough to yield reliable information. Nevertheless, the

results of such programs are used for the automated annotation of genomes and there

is a demand for fast gene finders which are as accurate as possible. The research area

of finding the protein coding genes in a eukaryotic genomic sequence by computational

7

8

Legend:

not transcibed or transcribed and spliced out

DNA sequence

translation

messenger RNA sequence

amino acid sequence

transcription + splicing

translatedtranscribed, not spliced out but not translated

Figure 1.1: A simplified scheme of gene expression.

methods has become very competitive. In [MSSR02] an overview over such programs is

given, referencing 22 homology-based programs plus 25 ab initio programs (possibly with

homology integration).

Most of the estimated 30000-40000 human genes code for proteins. In Figure 1.1

the simplified process is shown how the eukaryotic cells make a protein molecule from a

DNA sequence containing the gene. First a copy of a contiguous region of DNA larger

than the actually coding part is made. This process is called transcription. Out of this

sequence the introns are spliced out and the result is the concatenation of the exons, the

so called messenger RNA (mRNA). The number of exons per gene varies. Some genes

consist of only one exon and therefore do not contain introns. The human muscle protein

titin constitutes the other extreme. It consists of 178 exons. In humans there are on the

average about nine exons per gene [Bro02]. An internal contiguous part of the mRNA

is then translated sequentially to an amino acid sequence in chunks of three consecutive

nucleotides called codons according to the genetic code. The translation stops directly after

the first appearance of one of three stop codons: TAA, TAG, TGA. Finally the amino acid

sequence is folded 3-dimensionally in a way determined (almost always) by the amino acid

sequence itself. The reading frame of a protein-coding sequence is the information which

bases of the sequence are at the first, second or third position of a codon.

In the chromosomes the DNA sequence is found in a double stranded sequence, where

each nucleotide in one strand is opposed by a complementary nucleotide in the other strand.

A is the complement of T and vice versa. In the same way C and G are complementary

bases. As the sequence of nucleotides of one strand is fully determined by the sequence

of nucleotides on the opposite strand, we only need to know the sequence of one of the

strands. We call this strand the forward strand and its complementary strand the reverse

strand . Both strands do have a (chemically) distinguished direction. The sequence at

9

the top in Figure 1.1 is the forward strand. Here, and in all figures below, the forward

sequence has its downstream end at the right and its upstream end at the left. The reverse

strand goes in the opposite direction. Genes can be on both of the two strands.

Usually two neighboring genes (regardless whether they are on the same strand or on

opposite strands) are separated by an intergenic region, but exceptions to this organization

are known. In the human mitochondrial genome the coding regions (sic) of the genes ATP8

and ATP6, which are on the same strand, overlap by 46 nucleotides (the reading frames

in the overlapping region are different). An example of a gene lying within another gene is

the human neurofibromatosis type I gene on chromosome 17, which has three short genes

on the opposite strand within one of its introns. Each of these internal genes has introns

itself. These exceptions seem to be rare, though.

Chapter 2

Generalized Hidden Markov

Models

2.1 Notation

The following notation about strings will be used in this chapter and the following ones.

An alphabet is a countable set. The elements of an alphabet are called letters or characters.

For an alphabet Σ the set Σ+ denotes the set of all possible strings (words) of arbitrary

finite length n ≥ 1 which can be build from characters of Σ. For a string σ = σ1σ2 · · ·σn we

denote with |σ| = n the length of σ. The set Σn denotes the set of words of length n. The

symbol ε denotes the empty string, which consists of 0 characters and has length 0. We

define Σ∗ := Σ+ ∪ {ε}. For a string σ = σ1σ2 · · ·σn and indices 1 ≤ i < j ≤ n we denote

with σ[i, j], σ(i, j], σ[i, j) the substrings σi · · ·σj , σi+1 · · ·σj and σi · · ·σj−1, respectively.

For two strings σ and τ and indices a < b the statement [σ = τ]a..b is an abbreviation of

the statement σ[a, b] = τ [a, b].

2.2 Definition of a Generalized Hidden Markov Model

2.1 Definition (Markov chain)

A sequence of random variables X1, X2, . . . which take values in a countable set Q, is called

a Markov chain of order k ≥ 1 if for all i > k and all x1, x2, . . . , xi ∈ Q

P(Xi = xi |X1 = x1, . . . , Xi−1 = xi−1) = P(Xi = xi |Xi−k = xi−k, . . . , Xi−1 = xi−1).

The sequence is called a homogenous Markov chain if P(Xi = xk+1 |Xi−k = x1, . . . ,

Xi−1 = xk) does not depend on i (x1, . . . , xk+1 ∈ Q), otherwise it is called inhomogeneous.

For a homogenous Markov chain of order 1 the matrix A = (ar,s)r,s∈Q with ar,s = P(Xi =

s |Xi−1 = r) is called the transition matrix. The set Q is called the state space. If Xi = q,

then the process is said to be in state q at time i.

10

2.2. DEFINITION OF A GENERALIZED HIDDEN MARKOV MODEL 11

If the order of a Markov chain is not mentioned, it is assumed to be 1. To fully specify

the distribution of a Markov chain the distribution of X1, the initial distribution, must

also be given. In order to simplify the notation we introduce a special initial state qinit

and another constant random variable X0 ≡ qinit. Then the distribution of the Markov

chain X0, X1, . . . is fully determined by the transition matrix. We also introduce a special

terminal state qterm that – once entered – cannot be left. We write

Q+ = Q ∪ {qinit, qterm}. (2.1)

The extended transition matrix A = (ai,j)i,j∈Q+ must satisfy

aq,qinit
= 0 (q ∈ Q+)

aqinit,qterm = 0

aq,qterm > 0 (for at least one q ∈ Q)

aqterm,qterm = 1.

(2.2)

In words this means that the process starts in the initial state, immediately leaves that

state, stays some time within the states of Q, possibly jumps to the terminal state at some

time, and then stays in the terminal state forever. Let

T :=

{

inf{t |Xt = qterm} − 1. if this set is not empty;

∞ otherwise.
(2.3)

We demand that the transition matrix is such that T is almost surely finite:

P (T < ∞) = 1. Then the process almost always eventually enters the terminal state

and T is the number of states passed before the process enters the terminal state, i.e.

XT 6= qterm and XT+1 = qterm. There are two reasons for introducing such a terminal

state. One reason is the requirement that the sequence X1, X2, · · · , XT be finite as any

real world sequence. The other reason is that it will later easily enable us to consider only

sequences which end in certain states.

2.2 Definition (GHMM)

Let the state space Q+ and the transition matrix A be as specified above and let Σ be

a countable set, the emission alphabet. Further, let the probabilities ei,j,τ (σ) be defined

for i, j ∈ Q+, τ, σ ∈ Σ∗. A generalized Hidden Markov Model (GHMM) with state space

Q+, transition matrix A and emission probabilities ei,j,τ (σ) (i, j ∈ Q+, τ, σ ∈ Σ∗) is a

sequence

(X0, Y0), (X1, Y1), (X2, Y2), . . .

where X0 ≡ qinit, the sequence X0, X1, X2, . . . is a homogenous Markov chain on the state

space Q+ with transition matrix A and where Y0, Y1, . . . is a sequence of random variables

with values in Σ∗ such that Y0 ≡ ε and

exi−1,xi,τ (yi) = P(Yi = yi |Xi−1 = xi−1, Xi = xi, Y0Y1 · · ·Yi−1 = τ)

= P(Yi = yi |X0 = x0, . . . , Xi = xi, Y0 = y0, . . . , Yi−1 = yi−1)

2.2. DEFINITION OF A GENERALIZED HIDDEN MARKOV MODEL 12

for all i > 0 , for all x0, . . . , xi ∈ Q
+ , y0, . . . yi ∈ Σ∗ and τ = y0y1 · · · yi−1. The initial and

terminal state always emit the empty word which is never emitted by any other state:

er,s,τ (ε) = 0 (r ∈ Q+, s ∈ Q, τ ∈ Σ∗) and

er,qinit,τ (ε) = 1, er,qterm,τ (ε) = 1 (r ∈ Q+, τ ∈ Σ∗).

We denote with X the sequence of states X0, X1, . . . and with Y the sequence of

observations Y0, Y1,

Let x1, . . . , xn ∈ Q and d1, . . . , dn ≥ 1. The vector

ϕ = ((x1, d1), . . . , (xn, dn)) (2.4)

is called a parse of length ` if d1+ · · ·+ dn = `. It ends in xn and consists of n steps. The

parse ϕ(X,Y) induced by (X,Y) is defined by

ϕ(X,Y) := ((X1, |Y1|), . . . (XT , |YT |)) (2.5)

For (x,y) = ((x0, x1, . . .), (y0, y1, . . .)) and ` ≥ 1, the `-truncated parse induced by

(x,y) is defined by

ϕl(x,y) := ((x1, |y1|), . . . (xr, |yr|)) with r := max{n | |y1|+ · · ·+ |yn| ≤ ` and xn 6= qterm}

(2.6)

and can be interpreted as the longest initial subparse whose emission length does not

exceed `. Note that ϕl(x,y) is a parse of length ` if |y1| + · · · + |yn| = ` for some n. Let

σ(Y) denote the string obtained by concatenating the strings Y0, Y1,

We are now ready to explain the practical intention behind this formal model. The

Yi’s are called emissions and σ(Y) is observable. But the answer to the question in which

state each of the letters of σ(Y) was emitted is unknown and needs to be guessed. In

other words, the parse ϕ(X,Y) is ‘hidden’ and, in the applications of GHMMs, needs to

be uncovered using the observation σ(Y). The word ‘generalized’ in GHMM refers to the

fact that – as opposed to an ordinary HMM – the states in a GHMM may emit more than

one symbol. In an ordinary HMM the strings Yi all have length 1.

Immediately from the definition of GHMMs follows the following lemma, which states

how the probability of a sequence of states and emissions can be computed.

2.3 Lemma

Let t > 0, x1, . . . xt ∈ Q
+, y1, . . . , yt ∈ Σ∗, x0 = qinit, y0 = ε. Then

P (((X1, Y1), . . . , (Xt, Yt)) = ((x1, y1), . . . , (xt, yt))) =
t
∏

i=1

axi−1,xi
exi−1,xi,y0···yi−1

(yi) (2.7)

2.3. VITERBI ALGORITHM 13

Proof:

P (((X1, Y1), . . . , (Xt, Yt)) = ((x1, y1), . . . , (xt, yt)))

= P ((X1, Y1) = (x1, y1))

·P ((X2, Y2) = (x2, y2) | (X1, Y1) = (x1, y1))

· · · ·

·P ((Xt, Yt) = (xt, yt) | (X1, Y1) = (x1, y1), · · · , (Xt−1, Yt−1) = (xt−1, yt−1))

=
t
∏

i=1

axi−1,xi
· exi−1,xi,y0···yi−1

(yi)
¤

Remark: Some authors ([Bur97], [Ree00]) describing GHMMs seem to forget that in

their model the emissions do not only depend on the current state but also on the sequence

τ emitted so far. Their prediction programs use Markov chains for the emission in the

states modeling non-coding regions. In that case the emission distribution depends on

bases that have been emitted in previous steps.

2.3 Viterbi Algorithm

Given an observation σ ∈ Σ∗ of length t, an intuitive choice as a guess for the unknown

parse is to take a most likely parse, given the observation. Such a parse ψvit is called

Viterbi parse:

ψvit ∈ argmax
ψ parse of length t

P(ϕ(X,Y) = ψ |σ(Y) = σ). (2.8)

We call the conditional distribution of (X,Y) given that σ(Y) = σ the a-posteriori dis-

tribution. Thus the Viterbi parse is a parse with maximum a-posteriori probability. A

Viterbi parse can efficiently be calculated using a variant of the so-called Viterbi algorithm

[Vit67] which is described in the following. Let an input sequence σ of length t be given.

We define the Viterbi variables

γq,` := max
ψ parse of length `

ending in q

P(ϕl(X,Y) = ψ, [σ(Y) = σ]1..l) (2.9)

for all q ∈ Q and 1 ≤ ` ≤ t. For convenience we also set γqinit,0 = 1 and γq,0 = 0 for all

q 6= qinit. The Viterbi variables can be computed using a simple recursion. This recursion

can be deduced from first conditioning on whether ψ has more than one step and, if so,

2.3. VITERBI ALGORITHM 14

conditioning on the last step of ψ.

γq,` = max

{

P
(

ϕ`(X,Y) = ψ, [σ(Y) = σ]1..`
)

∣

∣

∣

∣

ψ = ((q, `)) or (2.10)

ψ = (ψ′, (q, d)) parse of length ` ending in q

}

= max

{

aqinit,q · eqinit,q,ε(σ),

max
q′∈Q, `′=`−d

ψ′ parse of length

`′ ending in q′

P
(

ϕ`′(X,Y) = ψ′, [σ(Y) = σ]1..`′
)

· aq′,q · eq′,q,σ[1,`′](σ(`
′, `])

}

= max

{

aqinit,q · eqinit,q,ε(σ), max
1≤`′<`,q′∈Q

γq′,`′ · aq′,q · eq′,q,σ[1,`′](σ(`
′, `])

}

Making use of the definition γqinit,0 = 1 we receive the Viterbi recursion

γq,` = max
1≤`′<`,q′∈Q

or q′=qinit,`
′=0

γq′,`′ · aq′,q · eq′,q,σ[1,`′](σ(`
′, `]) (2.11)

2.4 Theorem

Let σ be an emission of length t. Let ψ = ((x1, d1), . . . , (xn, dn)) with x1, . . . , xn ∈ Q be a

parse of length t and let x0 := qinit. Define si := d1+ · · ·+di (i = 1, . . . , n). If ψ satisfies

γxn,t · axn,qterm = max
q∈Q

γq,t · aq,qterm (2.12)

and, for all i = 1, . . . , n

γxi,d1+···+di
= γxi−1,d1+···+di−1

· axi−1,xi
· exi−1,xi,σ[1,si−1](σ(si−1, si]) (2.13)

then ψ is a Viterbi parse.

Proof: As P
(

ϕ(X,Y) = ψ, σ(Y) = σ
)

= P
(

σ(Y) = σ
)

· P
(

ϕ(X,Y) = ψ |σ(Y) = σ
)

every parse of length t that maximizes P
(

ϕ(X,Y) = ψ, σ(Y) = σ
)

is a Viterbi parse. Let

pvit be this maximal probability and let ψ be a parse of length t that satisfies (2.12) and

(2.13). Then

P (ϕ(X,Y) = ψ, σ(Y) = σ) =

(

n
∏

i=1

axi−1,xi
· exi−1,xi,σ[1,si−1](σ(si−1, si])

)

· axn,qterm

= γxn,t · axn,qterm

= max
q∈Q

γq,t · aq,qterm

= pvit

Here the first line follows from (2.7), the second line by induction using (2.13) and the last

by the definition of the γq,t’s. ¤

2.4. FORWARD ALGORITHM 15

Theorem 2.4 suggests the

Viterbi algorithm:

1) Compute and store the table of the Viterbi variables γq,` for q ∈ Q, 1 ≤ ` ≤ t

by increasing `.

2) Set q1 ← argmax
q∈Q

γq,t · aq,qterm

`1 ← t

3) i← 2

While `i−1 > 0 do

Begin

Set (qi, `i)← argmax
(q,`)∈Q×[1,`i−1)∪{(qinit,0)}

γq,` · aq,qi−1
· eq,qi−1,σ[1,`](σ(`, `i−1])

i← i+ 1

End

4) n← i− 2

Output the parse ψ = ((qn, `n − `n+1), . . . , (q1, `1 − `2)) as Viterbi parse.

The space complexity of this direct implementation is O(|Q| · t). The time complexity

depends much on the time needed to compute the arguments of the maximum in the

Viterbi recursion (2.11). In a usual application the transition probabilities can be stored

beforehand and be accessed in constant time. In simple cases (e.g. if the GHMM is a

HMM) the emission probabilities can also be stored in memory. But in a usual application

of GHMMs the emission probabilities will be computed according to some formula only

when they are needed.

2.4 Forward Algorithm

An algorithm that is closely related to the Viterbi algorithm is the so-called forward

algorithm. The Viterbi algorithm allows us to compute a parse ψvit with maximal a-

posteriori probability, but it does not allow to actually compute the a-posteriori probability

of ψvit. This can be achieved by the forward algorithm, which can be used to compute

the probability of an emission σ, and thus the a-posteriori probability of parses. It is also

needed as a preprocessing step for the sampling algorithms discussed in the next section.

Analogously to the Viterbi variables we define the forward variables

αq,` := P(ϕ`(X,Y) is a parse of length ` ending in q, [σ(Y) = σ]1..`)

=
∑

ψ parse of length `

ending in q

P(ϕ`(X,Y) = ψ, [σ(Y) = σ]1..`) (2.14)

for all q ∈ Q and 1 ≤ ` ≤ t. Again, we also set αqinit,0 = 1 and αq,0 = 0 for all q 6= qinit.

Based on Formula (2.14) we can derive a recursion for the forward variables in the same

2.4. FORWARD ALGORITHM 16

way as for the Viterbi variables just with maxima replaced by sums. This yields the

following forward recursion for the forward variables.

αq,` =
∑

1≤`′<`,q′∈Q
or q′=qinit,`

′=0

αq′,`′ · aq′,q · eq′,q,σ[1,`′](σ(`
′, `]) (2.15)

The forward algorithm simply consists of the computation of the forward variables.

Forward algorithm:

1. Iteratively compute the forward variables αq,` by increasing ` using a dynamic pro-

gramming table and recursion (2.15)

The forward variables can be used to compute the probability P (σ(Y) = σ) of an

emission σ.

2.5 Theorem

Let σ ∈ Σ∗ be an emission of length t. Then

P (σ(Y) = σ) =
∑

q∈Q
αq,t · aq,qterm (2.16)

Proof: For all q ∈ Q we have

αq,t · aq,qterm = P(ϕ(X,Y) is a parse of length t ending in q, [σ(Y) = σ]1..t)

Thus (2.16) follows by the application of the law of the total probability. ¤

Knowing the probability of an emission σ enables us to compute the a-posteriori proba-

bilities of parses via the following

2.6 Theorem (a-posteriori probability of a parse)

Let σ ∈ Σ+ be an emission of length t and let ψ = ((x1, d1), . . . , (xn, dn)) be a parse of

length t. Define y1, y2, . . . yn ∈ Σ∗ such that these strings concatenate to σ, y1y2 · · · yn = σ,

and such that |yi| = di for i = 1, . . . n and let x0 := qinit, y0 := ε. Then

P (ϕ(X,Y) = ψ |σ(Y) = σ) =

(
∏n
i=1 axi−1,xi

· exi−1,xi,y0···yi−1
(yi)
)

· axn,qterm
∑

q∈Q αq,t · aq,qterm

Proof:

P (ϕ(X,Y) = ψ |σ(Y) = σ)

=
P (ϕ(X,Y) = ψ, σ(Y) = σ)

P (σ(Y) = σ)

=
P (((X1, Y1), . . . , (Xn, Yn)) = ((x1, y1), . . . , (xn, yn))) · axn,qterm

P (σ(Y) = σ)

=

(
∏n
i=1 axi−1,xi

· exi−1,xi,y0···yi−1
(yi)
)

· axn,qterm
∑

q∈Q αq,t · aq,qterm

2.5. SAMPLING ALGORITHM 17

Here, the first line is the definition of the conditional probability, the second follows as the

parse and the overall emission together determine the realization (X,Y) of the GHMM

and the third by Lemma 2.3 and Theorem 2.5.
¤

2.5 Sampling Algorithm

With the Viterbi algorithm we have a means of finding one particular parse. This parse

might be wrong in the sense that it differs from the correct parse ϕ(X,Y). Besides, in the

application of gene prediction, alternatively spliced genes correspond to different parses

which can all be considered as correct. The sampling algorithm described in this section

is a method of ‘drawing random samples’ of the set of all parses according to their a-

posteriori probability. I.e. this method yields a parse ψ with its a-posteriori probability

P (ϕ(X,Y) = ψ |σ(Y) = σ). Therefore, parses with high a-posteriori probability have a

relatively high likelihood of getting sampled. In particular, a Viterbi parse is a parse which

is most likely to get sampled. Section 4.1.3 shows some results of applying the sampling

algorithm to gene prediction.

The sampling algorithm proceeds by constructing a parse ψ = ((x1, d1), . . . , (xn, dn))

stepwise in the reverse order by random choices of xn, dn, xn−1, dn−1, xn−2, . . . , x1, d1.

Let an emission σ of length t be given. We assume that P (σ(Y) = σ) > 0.

sampling algorithm

1) Compute and store the table of the forward variables

αq,` for q ∈ Q, 1 ≤ ` ≤ t.

2) Choose q1 ∈ Q at random according to the probability distribution on Q:

p1(q) =
αq,t·aq,qterm

∑

r∈Q αr,t·ar,qterm
.

`1 ← t

3) i← 2

While `i−1 > 0 do

Begin

Choose an element (qi, `i) at random according to the probability distribution

on Q× [1, `i−1) ∪ {(qinit, 0)}:

pi(q, `) =
αq,` · aq,qi−1

· eq,qi−1,σ[1,`](σ(`, `i−1])

αqi−1,`i−1

.

i← i+ 1

End

4) n← i− 2

Output the parse ψ = ((qn, `n − `n+1), . . . , (q1, `1 − `2)).

2.5. SAMPLING ALGORITHM 18

2.7 Theorem

The sampling algorithm outputs parse ψ with probability P (ϕ(X,Y) = ψ |σ(Y) = σ).

Proof: First observe that all probabilities of each random choice sum up to 1. In step 2)

this is immediately clear and in step 3) this is because of the forward recursion (2.15).

The probability that parse ψ = ((qn, `n − `n+1), . . . , (q1, `1 − `2)) gets sampled is the

product of all probabilities of the random choices made in constructing ψ.

P (ψ gets sampled) = p1(q1) ·

n+1
∏

i=2

pi(qi, `i)

=
aq1,qterm

∑

q∈Q αq,t · aq,qterm

n+1
∏

i=2

aqi,qi−1
· eqi,qi−1,σ[1,`i](σ(`i,`i−1]) (2.17)

= P (ϕ(X,Y) = ψ |σ(Y) = σ)

Line (2.17) follows as the denominator αq1,`1 of p2(q2, `2) cancels out with the forward

variable in the nominator of p1(q1) and the denominator of pi(qi, `i) cancels out with the

forward variable in the nominator of pi−1(qi−1, `i−1) (i = 3, . . . , n + 1), and as qn+1 =

qinit, `n+1 = 0 and therefore αqn+1,`n+1
= 1. The last line follows by Theorem 2.6. ¤

Chapter 3

A Generalized Hidden Markov

Model for Genomic Sequences

3.1 History of GHMMs for Gene Prediction

Surveys over computational gene prediction are given in [Cla97] and [MSSR02]. I will

here only restate the roots of Generalized Hidden Markov Models for gene prediction and

mention some stepping stones in the development.

One of the earliest published methods for identifying protein coding regions with the

computer is reported in [SM82]. They used codon usage statistics to predict which one of

the three reading frames is correct in a sequence assumed to be completely coding. The

reading frame – also cased phase – of a coding sequence is the information at which of the

3 positions modulo 3 the codons start. They applied their method to a sliding window

of a given input DNA sequence and analyzed the results ‘manually’. Only a couple of

months later Fickett [Fic82] published a method to distinguish between coding and non-

coding regions by computing a simple statistic measuring how much the distribution of

a nucleotide at the three codon positions deviates from a uniform distribution. These

numbers, together with the A-,C-,G- and T-content in the sequence, were used to classify a

given input sequence as either coding or non-coding. Again, Fickett assumed that the input

sequences were either completely coding or completely non-coding. GENMARK [BM93]

is the first gene finder which uses a Markov model. It uses a 3-periodic Markov chain of

order 5 for coding regions and another Markov chain of order 5 for non-coding regions.

Within a sliding window the probability that this window is coding in any of the 6 reading

frames (3 each on the forward and reverse strand) is computed and plotted. This tackled

also a common source of error: The prediction of shadow genes on the reverse strand.

ECOPARSE [KMH94] is the first gene prediction program which is based on a Hidden

Markov Model. It predicts genes in prokaryotic DNA (Escherichia coli). In prokaryotes

19

3.2. DEFINITION OF THE GHMM AUGUSTUS 20

the genes are contained in contiguous open reading frames (ORF, in this thesis: substring

and associated reading frame which contains no in-frame stop codon) which are on average

about 1000 bases long. This is usually much longer than one would statistically expect

in non-coding regions. This fact helps a lot in identifying bacterial genes. In eukaryotes

the presence of introns which interrupt the coding sequence and the fact that many exons

are not long enough for their open reading frame being statistically conspicuous makes

gene prediction much more difficult. VEIL [HSF97] uses a Hidden Markov Model for

segmenting eukaryotic DNA into exons, introns and intergenic regions. In this model each

state emits exactly one symbol. GENIE [KHRE96] is the first program for the task of gene

prediction which bases on a GHMM. The states may emit a whole string of bases at once

according to an arbitrary probability model, e.g. the whole splice site region is emitted

at once according to a splice site submodel. This allows to take into account longer range

dependencies between base positions emitted in one step. When introduced, the GHMM-

based program GENSCAN [Bur97], was probably the most accurate tool which made it

to a prevalent tool up to the present. GENIE and GENSCAN also use 5th order Markov

models as content sensors for the coding and non-coding regions.

3.2 Definition of the GHMM AUGUSTUS

We call the Generalized Hidden Markov Model introduced in this chapter AUGUSTUS. We

also refer to the implementation of this model as AUGUSTUS. AUGUSTUS is a model for

genomic DNA sequences of arbitrary finite length and the protein coding genes contained

in the sequence. The genes modeled here constitute the protein coding part of the DNA

sequence, which is drawn red (dark) in Figure 1.1. Below we will refer to the collection of

the coding parts of the exons of a protein coding gene as ‘the gene’, thus not taking into

consideration the non-coding exons. Also, we will use the term ‘exon’ in the following for

protein coding exons only. The number of genes is also arbitrary, including the case of a

gene-less sequence. Any series of genes on both strands is allowed where the genes do not

overlap, neither on the same strand nor on opposite strands. We call the collection of genes

together with the exact location of all the exon boundaries a gene structure. The model

is such that there is a one-to-one correspondence between parses and gene structures, i.e.

each parse defines unambiguously a gene structure for the sequence and for each gene

structure there is exactly one parse. (In some other GHMMs a gene structure may have

several parses: In the model of HMMGene a set of parses maps to each gene structure and

the probability of this set is estimated by an approximation algorithm [Kro97]. GENSCAN

contains a promoter model and different promoter positions in different parses may yield

the same gene structure [Bur97]. Nevertheless, Burge uses the Viterbi algorithm.) Genes

at the upstream and downstream boundaries of the sequence may be partial (incomplete)

3.2. DEFINITION OF THE GHMM AUGUSTUS 21

in the sense that only some of the exons of the gene are completely contained in the

sequence and the other exons lie beyond the boundary of the sequence.

The model parameters have been estimated using training sets of annotated sequences

(see section 7.2). We use different models for human genomic sequences and for those

genomic sequences of the fruit fly Drosophila melanogaster. These models are very similar:

the same states are used, the same transitions are possible and mostly the same methods

are used to estimate emission probabilities (from the data of two different training sets).

Whenever the models differ we will explicitly say so.

3.2.1 States and Transitions

The states in the state set Q of AUGUSTUS correspond to a biological meaning (e.g.

intron, exon, splice site). Transitions between these states are only allowed in a biologically

meaningful way (e.g. an acceptor splice site must follow an intron). AUGUSTUS uses the

following 47 states:

Q = {IR,Esingle,Eterm, rEsingle, rEinit}
⋃

2
⋃

i=0

{Eiinit,DSSi, Iishort, I
i
fixed, I

i
geo,ASSi,Ei, rEiterm, rDSSi, rIishort, rI

i
fixed, rI

i
geo, rASSi, rEi}

Q+ = Q ∪ {qinit, qterm}

We will use in this section the notation of Chapter 2. The states in Q are shown in

Figure 3.1. The arrows in this figure denote the non-zero transition probabilities between

states in Q. The transition matrix A = (ai,j)i,j∈Q+ is defined as follows. The transition

probabilities ai,j for i, j ∈ Q are given in Figure 3.1 rounded to 6 decimal places. The

transitions to and from the intron states Ijgeo, I
j
short, I

j
fixed, rI

j
geo, rI

j
short, rI

j
fixed are left out in

this figure. These intron transitions implicitly model the intron lengths and are different

in the human and fruit fly version. They are defined in Section 3.2.2. The transitions out

of state qinit (initial probabilities) are

aqinit,q :=



























0 if q ∈ {qinit, qterm};

0.9 if q = IR;

0.01 if q ∈ {I0geo, I
1
geo, I

2
geo, rI

0
geo, rI

1
geo, rI

2
geo};

0.001 otherwise.

(3.1)

The remaining transitions into state qterm (terminal probabilities) are: aqterm,qterm = 1 and

for all q ∈ Q

aq,qterm = δ · aqinit,q (3.2)

with δ := 10−7, i.e. the terminal probabilities are proportional to the initial probabilities.

3.2. DEFINITION OF THE GHMM AUGUSTUS 22

E
init
1

0
E E E

21

rI
fixed

0

georI
0

0
rDSSrASS

0

short
rI

0

IgeoI

DSS
0

0

0 IgeoIfixed

ASS

IgeoIfixed

DSS ASS

1

1

2

22
fixed

0 1 1
DSSASS

E2

init term
0 E

single
E

init

0 1

2 2

E

short
I

short
I

short
I

0.1 0.1 0.1
111

1 11

0.9 0.9 0.9

1/3 1/3 1/3

term
0

term
1 2

rE

11 1

1 1
0.000009

0.000041

0.000041

0.9999

110.000009

1/3 1/3

0.9 0.9 0.9

0.1 0.1 0.11 1 1

1/31/31/3

1/3 1/3 1/3

IR

rE rE rE
term initsingle

rE

rI
fixed

1

georI
1

short
rI

1rASS
1 1

rDSS rASS
2

rI
fixed

2

georI
2

2
rDSS

short
rI

2

rE rE
0

rE
1 2

1/3

strand
reverse

strand
forward

Figure 3.1: The states of AUGUSTUS except qinit, qterm and the possible transitions be-

tween them. The states with names beginning with ‘r’ model the same as those without

‘r’ but on the reverse strand. Esingle: a single exon gene. Einit: The first coding exon of a

multi exon gene. DSS: the donor (5’) splice site. Ishort: an intron at most d nucleotides

long. Ifixed: the first d nucleotides of a longer intron. Igeo: the individual nucleotides

after the first d nucleotides of a longer intron. ASS: the acceptor (3’) splice site including

branch point. E: an internal (coding) exon. Eterm: the last exon of a multi exon gene. IR:

the intergenic region. Diamonds stand for states which emit strings of fixed length, ovals

for states with explicit length distribution. The numbers at the arrows are the transition

probabilities. The remaining transition probabilities for the intron states are shown in

Figure 3.4, they depend on the species. The exponents 0,1,2 stand for the phase of the

reading frame. The two small circles are silent states and were only introduced here for

clarity.

3.2. DEFINITION OF THE GHMM AUGUSTUS 23

Remark: Multiplying all terminating probabilities with δ and leaving everything un-

changed has no effect on the results of the formula for the a-posteriori probabilities of the

parses, which we are mainly interested in. Of course the other probabilities should then

be scaled in order to sum up to 1 so that A is again a probability matrix. δ is simply

chosen small enough, so that this scaling has no noticeable effect.

The states in the upper half of Figure 3.1 model genes on the forward strand. The

state Esingle corresponds to a gene consisting of just one exon. All other states in the

upper half correspond to parts of genes with more than one exon, i.e. genes containing

introns. In order to ‘memorize’ the reading frame position of the previous exon there are

three states for each type, except for the terminal exon Eterm. For the initial exon states

E0
init,E

1
init,E

2
init – corresponding to the first exon of a gene – and the internal exon states

E0,E1,E2– corresponding to interior exons of a gene – the superscript indicates the reading

frame in which the exons ends. The superscript is 0 if the exon ends with a complete codon,

i.e. the codon boundary and the exon end are the same. The superscript is 1 if the last

codon boundary is 1 position before the end of the exon and the superscript is 2 if the

last codon boundary is 2 positions before the end of the exon. For the donor splice site

states DSSj , the acceptor splice site states ASSj and the intron states Ijshort, I
j
fixed, I

j
geo the

superscript j stands for the reading frame of the preceeding exon. This construction with

a state for each reading frame allows to account for the reading frame in the emission

distribution of the exon states, and in particular to exclude in-frame stop codons in an

exon sequence. The states in the lower half of Figure 3.1 model genes on the reverse strand.

When the forward sequence is stepped through from left to right the parts of a gene on

the reverse strand are stepped through in the reverse order as compared to if the gene was

on the forward strand. The reverse-strand states on the lower half each have a leading ‘r’

in the state specifier. They have the same biological meaning as the corresponding states

on the forward strand. On the reverse strand the superscripts also indicate the reading

frame at the rightmost (with respect to the forward strand input sequence) position of the

exon. This is the reason why on the reverse strand there are three states for a terminal

exon and only one initial exon state.

3.2.2 Emission Distributions

The emission alphabet Σ of AUGUSTUS is the set of nucleotides: Σ = {A,C,G, T}.

We will define the distribution of the random emissions Y ∈ Σ∗ (given the current and

the previous state) in two steps. First we define a length distribution, P(|Y | = `) for

all lengths `, and then P(Y = σ | |Y | = `) for all strings σ ∈ Σ∗ of length `. Then

P(Y = σ) = P(|Y | = `) · P(Y = σ | |Y | = `) is implicitly defined.

Remark: Actually the input sequence may contain a fifth letter (N) for an unknown

3.2. DEFINITION OF THE GHMM AUGUSTUS 24

nucleotide, which is rare in the test and training sequences when compared to the frequency

of the other nucleotides. This case is treated with the following heuristic. Whenever the

emission probability of a string containing this unknown nucleotide needs to be computed,

a discrete uniform distribution is assumed for some short part of the sequence; for example

a nucleotide emission probability of 1
4 in the case of a Markov model.

Length distributions

The length distributions and the transition probabilities ai,j determine together the length

distributions of the biological exons, introns and the intergenic region in our model. We

define the length distributions and transition probabilities in such a way that the resulting

length distributions of initial exons, internal exons, terminal exons, single exons, introns

and intergenic regions are good approximations to the observed length distributions, esti-

mated from the training data.

The diamond-shaped states in Figure 3.1 have a trivial length distribution: Only one

fixed length is possible. Ijgeo, the corresponding reverse states and IR always emit strings

of length 1, i.e.

∑

σ∈Σ
ei,j(σ) = 1 for all i ∈ Q+, j ∈ {I1geo, I

2
geo, I

3
geo, rI

1
geo, rI

2
geo, rI

3
geo, IR}.

The states DSSj , ASSj and the corresponding reverse states also always emit strings of

a certain specific length given on page 34. The states Ijfixed and the corresponding reverse

states emit only strings of length d which is given on page 31.

Exon length distribution

The length distributions of the states Esingle,Eterm,E
0
init,E

1
init,E

2
init,E

0,E1,E2 and the

corresponding reverse states determine the length distribution of the biological single,

terminal, initial and internal exons because the length of the biological exon is always the

length of the emission in the exon state plus some constant length of parts of the sequence

modeled by the splice site models. We will here describe the length distribution of the

biological exons.

In order to estimate the length distribution of the exons we made use of training sets

described in Section 3.4. For each of the two species – human and Drosophila – and for

each of the four types of exons – single, initial, internal, terminal exon – we separately

estimate the length distribution from a sample of lengths `1, `2, . . . , `n given by the training

set. From these given exon lengths we compute an estimate for the probabilities πi that a

random exon has length i (i = 1, 2, . . .). The simple solution of using the empirical length

distribution, i.e. to estimate πi by the the relative frequency of length i in the sample

cannot be chosen because this would overfit the data. The empirical distribution needs to

be smoothed such that random accumulations play a smaller role. It cannot be determined

3.2. DEFINITION OF THE GHMM AUGUSTUS 25

alone from the sample, whether an accumulation of exons of an approximate length is pure

random or a mode of the distribution. Although there are theoretical measures for the

quality of such a smoothing technique, it is theoretically not clear how this tradeoff between

fitting well and smoothing enough should be settled in favor of the prediction accuracy of

the resulting GHMM. We use a kernel estimator with discrete Gaussian kernel function

and variable bandwidth. This technique is, for example, described in [BA97].

For a bandwidth σ > 0 let fσ(k) := c · 1σ · ϕ(
k
σ) (k ∈ Z), where ϕ is the density of the

standard Gaussian distribution and c is chosen such that
∑

k∈Z fσ(k) = 1. Then on the

integers fσ is close to the density of a Gaussian distribution with mean 0 and standard

deviation σ. These kernel functions fσ are used to retrieve a smoothed empirical length

distribution in the following way.

π′i :=
1

n

n
∑

j=1

fσ(`j)(i− `j) (i ∈ Z) (3.3)

It can easily be checked that (π′i)i∈Z is a probability distribution on the integers.

Finally, we exclude the non-positive integers and renormalize to get

πi := π′i/
∞
∑

j=1

π′j (i = 1, 2, . . .). (3.4)

We let the bandwidth σ depend on the position `. Informally spoken, with this method

we distribute the empirical weight 1
n of every observed length ` to an area centered around

`. The ‘width’ of this area is given by the bandwidth. Lengths close to ` get a higher

weight than lengths further away from ` because of the shape of the density of the Gaussian

distribution. We choose the bandwidth such that the width of this area grows as the

expected probability of length ` decreases. One reason why the latter is necessary is that

with increasing lengths the sample data is increasingly sparse such that a using a fixed

bandwidth would result in an overfitted distribution.

Heuristically, we expect the probability of a particular length ` to be small, when ` is

large or when few sample lengths lie close to the left of ` and few sample lengths lie close

to the right of `. Let L := {`1, . . . , `n}, a be a positive real constant and m be a positive

integer constant. We chose the following bandwidth

σ(`) := max







a
5√n`

min{r ≥ 1 | |{`, . . . , `+ r − 1} ∩ L| ≥ m or |{`− r + 1, . . . , `} ∩ L| ≥ m}

(3.5)

The proportionality of the bandwidth in the data-independent first case of the maxi-

mum in (3.5) to the inverse of the fifth root of the sample size n has been chosen because

this proportionality is optimal in the case of density estimation with respect to the mean

3.2. DEFINITION OF THE GHMM AUGUSTUS 26

integrated square error [BA97]. In the second case of the maximum the bandwidth for

length ` is chosen to be 1 plus the distance to the m-th nearest neighbor of ` in L to the

left or to the right, whichever is smaller. We take the minimum of the distances on the two

sides because the distribution may drop abruptly at the minimum possible length. The

values of the constants are a = 0.5 and m = 8; the resulting exon length distributions are

shown in Figure 3.2.

In order to save space when storing these distributions in a parameter file, we only

store the individual probabilities up to a length of 3000 and assume a geometric tail of the

length distribution. Only 0.3% of the human and 1% of the Drosophila exons were longer

than 3000 nucleotides.

We now define the length distributions of the eight forward exon states Esingle, E
0
init,E

1
init,

E2
init,E

0,E1,E2,Eterm. Between the length ` of an exon (single, initial, internal, terminal)

and the length r of the emission of the corresponding exon state is a simple correspon-

dence. The two lengths differ by a relatively small constant number of nucleotides: some

coding bases are emitted from a splice site state and some non-coding bases are emitted

in an exon state (at the translation start point). Let δ ∈ Z be that length difference such

that ` = r + δ. We also need to consider the reading frame of the current exon state and

the previous state to ensure that the exon lengths match the reading frames. Let q be

one of the eight states mentioned above. Let f2 be the reading frame (superscript) of the

current state q; if q = Esingle or q = Eterm let f2 = 0. Let f1 be the reading frame of the

previous state in the process. If the previous state is IR, let f1 be 0. Let (πi)i∈Z be the

estimated length distribution of the exon type corresponding to q (πi = 0 for i ≤ 0). Then

we define the length distribution of state q as follows.

P(|Y | = `− δ) := k ·

{

π` if f1 + ` ≡ f2 mod 3 and `− δ ≥ 1;

0 otherwise.
(l ∈ Z) (3.6)

Here, k is a norming constant, in practice close to 3, ensuring that the distribution sums

up to 1: P(|Y | ≥ 1) = 1. Equation (3.6) ensures that the length of an exon is such that

the reading frame position at the end of the exon is correct.

3.2. DEFINITION OF THE GHMM AUGUSTUS 27

0 100 250 500 1000 1500 2000
length

0.0002

0.0004

0.0006

0.0008

probability human single exons

0 100 250 500 1000 1500 2000
length

0.0002

0.0004

0.0006

0.0008

0.001

probability drosophila single exons

0 100 250 500
length

0.002

0.004

0.006

probability human initial exons

0 100 250 500
length

0.001

0.002

0.003

0.004

probability drosophila initial exons

0 100 250 500
length

0.001

0.002

0.003

0.004

0.005

0.006

0.007

probability human internal exons

0 100 250 500
length

0.001

0.002

0.003

0.004

probability drosophila internal exons

0 100 250 500
length

0.001

0.002

0.003

0.004

probability human terminal exons

0 100 250 500
length

0.0005

0.001

0.0015

0.002

0.0025

probability drosophila terminal exons

Figure 3.2: Exon length distributions. The distributions for humans (left) and Drosophila

(right) often have the same modes with different intensities. The number n of exons used

for estimation of the length distributions are. human: single, initial, internal, terminal:

n = 462, n = 822, n = 4334, n = 822, respectively; Drosophila: single, initial, internal,

terminal: n = 76, n = 324, n = 917, n = 324, respectively.

3.2. DEFINITION OF THE GHMM AUGUSTUS 28

Intron length distribution

A short fixed-length initial part of a biological intron on the forward strand is emitted

from state DSSj for some j and a terminal part of fixed length is emitted from state ASSj .

The middle part of the intron sequence is emitted either in one step from state Ijshort or in

several steps from states Ijfixed and Ijgeo. The length distribution of the biological introns

is determined by the length distributions of the intron states Ijshort, I
j
fixed and Ijgeo and

the transition probability aIj
geo,I

j
geo

. The corresponding applies to introns on the reverse

strand. The reason for introducing these three intron states instead of just one single state

is explained next.

The geometric approximation. Generalized Hidden Markov Models for gene prediction

have one or more states modeling a biological intron. The states of such a model can have

an explicit length distribution of the sequence emitted in this state, or the length can be

implicitly modeled by emitting just one nucleotide at a time but allowing to transition back

to the same state. States with an explicit length distribution allow an accurate modeling of

the length at the cost of computation time. If no further heuristic is used the computation

time of the typical algorithms (Viterbi, forward algorithm) is at least proportional to the

maximal possible length of this state. Introns can be very long: the human neurexin-3

gene on chromosome 14 has an intron of length 479 Kb [WPY01]. It is therefore practically

infeasible to explicitly model the whole length distribution in a GHMM. The method of

using a state which emits just one nucleotide and allowing transitions back to the state is

computationally efficient. The algorithms only require constant time for each position of

the sequence for this state. But this option limits the length distribution of introns to a

‘shifted’ geometric distribution which assigns length ` > δ the probability q(1 − q)`−1−δ

with parameters 0 < q < 1 and an integer δ. δ would be the length of those parts

of an intron which are modeled in other states such as possibly the splice sites. For

example, the GHMM-based gene prediction programs GENSCAN, GENIE, TWINSCAN

and DOUBLESCAN all use a model in which the introns have a shifted geometric length

distribution.

The solid line in the 4 graphs of Figure 3.3 shows the smoothed length distribution of

human and Drosophila introns of our training sets. This distribution was retrieved with

the same method as the length distributions of the exons. We used the constants a = 0.4

and m = 3 in Formula (3.5). The two lower graphs have both axes on logarithmic scale so

that the length distribution for large lengths can be visualized. The mean intron lengths

are 1187 (human) and 896 (Drosophila). The figures also show the geometric length distri-

bution (short dashes) with the parameter estimated by the maximum likelihood method:

P (L = l) = q(1− q)l−1, with q = 1/1187 (human) and q = 1/896 (Drosophila).

The graphs show two shortcomings of the geometric distribution as a model for intron

lengths. One problem is that a (shifted) geometric distribution always assigns the highest

3.2. DEFINITION OF THE GHMM AUGUSTUS 29

0 60 89 200 400 600
length

0.001

0.002

0.003

0.004

0.005

probability

trueHsmoothedL AUGUSTUS geometric

human intron length distributions

0 48 60 100 200
length

0.005

0.01

0.015

0.02

0.025

0.03

probability

trueHsmoothedL AUGUSTUS geometric
drosophila intron length distributions

60 89 584 2000 5000 10000 20000
length

0.004

0.000424

0.0001

0.00001

1.´10-6

1.´10-7

1.´10-8

1.´10-9

1.´10-10

probability

trueHsmoothedL AUGUSTUS geometric

human intron length distributions

4860 100 929 2000 5000 10000 20000
length

0.03

0.001

0.0000562

0.00001

1.´10-6

1.´10-7

1.´10-8

probability

trueHsmoothedL AUGUSTUS geometric
drosophila intron length distributions

Figure 3.3: Intron length distributions. The two graphs on the left are for human introns,

the ones on the right are for Drosophila. Top: The smoothed length distribution of the

introns in the respective training set, the length distribution of introns of the AUGUSTUS

model and the geometric distribution. The geometric distribution is a bad approximation

for short introns. The geometric approximation is better in the human case than in the

Drosophila case. 26% of the human introns were shorter than 200 nucleotides. 63% of the

Drosophila introns are shorter than 100 nucleotides. Bottom: The same curves as above

but with both axes on logarithmic scale. Up to d = 584 (human) and d = 929 (Drosophila)

AUGUSTUS uses approximately the ’true’ length distribution, the tail of AUGUSTUS’

distribution is geometric, too. About 46% of the human introns are longer than 584

nucleotides. About 13% of the Drosophila introns are longer than 929 nucleotides.

probability to the shortest possible length. But in our Drosophila test set the shortest

intron had length 48 and there were 12 introns with a length between 48 and 52 but there

were 223 introns with a length between 58 and 62. A program that uses the geometric

intron distribution must either allow no such short introns or must assign a higher prob-

ability to their length than it assigns to any larger length. Human intron lengths peak

around a length of 89, but this peak is much less pronounced than that of Drosophila. The

other problem of a geometric distribution is that, when q is realistically chosen, long introns

become much less likely than they really are. Again this is more obvious for Drosophila.

Reese et al. explain the fact that many long Drosophila introns are not recognized by their

program GENIE as follows “...the length distribution of introns, a geometric distribution

that favors short introns, is the reason for so many split genes” [RKTH00]. Brejova and

3.2. DEFINITION OF THE GHMM AUGUSTUS 30

Vinar have published a new dynamic programming algorithm to incorporate into a Hid-

den Markov Model length distributions with geometric tail [BV02]. We present a simple

method for achieving the same goal that allows us to keep the algorithms of Chapter 2.

A new way of modeling the length distribution. We combine states with and without

explicit length distribution in order to model an initial part of length d of the length

distribution more accurately and the remaining part with a geometric distribution. This

makes the resulting implicit length distribution much more accurate while at the same

time not losing too much computational efficiency. We use the model shown in Figure 3.4

for introns.

I

DSS ASS

geoIfixed

I short

q

1p

1− p

1− q

1

Figure 3.4: AUGUSTUS’ intron model. The arrows denote possible transitions and are

marked with the transition probabilities.

In this paragraph let the term inner intron refer to the part of the intron not modeled in

the splice sites, i.e. the intron with the two relatively short fixed-length pieces cut off at the

ends. Assume L is the length of a random inner intron, estimated with a kernel estimator

as described above. LetM be the random length of an inner intron generated by our model

in Figure 3.4. The state Ishort has an explicit length distribution with maximal length d,

namely length ` with 0 ≤ ` ≤ d has probability P (L = `)/P (L ≤ `). The state Ifixed emits

a string of fixed length d and the state Igeo emits just one nucleotide but implicitly has

a geometric length distribution with parameter q. There is a one-to-one correspondence

between intron lengths and paths from DSS to ASS. If the intron has length at most d the

corresponding path goes through Ishort and if it has length l > d the path goes first through

Ifixed, then l− d times to state Igeo and then leaves Ifixed to ASS. The distribution of M is

as follows. For ` ≤ d we have P (M = `) = pP (L = `)/P (L ≤ `) (= transition probability

to Ishort times length probability). For ` > d we have P (M = l) = (1− p)(1− q)`−d−1q (=

product of all transition probabilities). Now q, p and d are still free parameters. We set q

such that the expectation of M , given M > d, is the expectation of L, given L > d, i.e.

d+ 1/q = E[L |L > d]. Then we set p such that P (M = d+ 1) = P (M = d) and there is

no jump in the distribution ofM between positions d and d+1. Then it remains to choose

the parameter d which is a trade-off between accuracy (large d) and speed (small d). We

3.2. DEFINITION OF THE GHMM AUGUSTUS 31

choose d to be smallest such that p ≈ P (L ≤ d). We get q ≈ 1/4894, p ≈ 0.78, d = 929

for Drosophila and q ≈ 1/1688, p ≈ 0.43, d = 584 for humans. The running time of

AUGUSTUS is about 6 minutes for the 1.6 mega bases of the Drosophila test set on a PC

with 2.4 GHz.

This model architecture also allows to use different content models for long and for

short introns. Also additional splice site models could be integrated into the short intron

model so that different splice site models could apply to short and long introns. This

is suggested by the assumption that the splicing process is typically different for long

and short introns [LB01]. The resulting model would also allow to take into account

dependencies between the donor and acceptor splice sites of short introns.

Sequence distributions

In this section we specify for all states the conditional distribution of an emission given its

length, which we call the sequence distribution. Let Y i,j,τ be a random emitted string in

current state j with previous state i and previous emission τ , i.e. the random string Y i,j,τ

has the distribution given by ei,j,τ . In the previous section we defined the distribution

of |Y i,j,τ |, the length of the emission, which depends for some current states j on the

previous state i in order to account for the reading frame. We now define the conditional

distribution of Y i,j,τ given the events |Y i,j,τ | = ` (` = 1, 2 . . .). Then the distribution of

Y i,j,τ is fully defined.

In AUGUSTUS the conditional distribution of Y i,j,τ given the event |Y i,j,τ | = ` does

not depend on the previous state i anymore (` = 1, 2 . . .): For all j ∈ Q+, τ ∈ Σ∗, ` ≥ 1,

and σ ∈ Σ+ with |σ| = `

P(Y i,j,τ = σ | |Y i,j,τ | = `) is equal for all i ∈ Q+ such that P(|Y i,j,τ | = `) > 0

Informally spoken, the distribution of the emission depends – except for its length – only

on the current state and the emission so far. Thus we only have to specify the sequence

distribution once for each state j and not for combinations of j and i. The distribution

will also depend, if at all, only on the last few bases of τ (when a Markov chain is used

for the distribution of state j, e.g. in the state for intergenic region).

In the following we describe the sequence distribution for each state. Each state uses

one or more simple stochastic submodels for different parts of the sequence. Figure 3.5

shows these parts and the underlying submodels for humans. Table 3.1 shows the sub-

models each state uses.

3.2. DEFINITION OF THE GHMM AUGUSTUS 32

111
dss

model model
branch point

dss
model

intial
patternmodel

ass

11111111

start
codon

1111 320

motif
translation initiation

model
non−coding intial

pattern

intial
patternmodel

ass
6 111111113

codon
stop non−coding

model
exon content

model

start
codon

long intron

d9 32111

internal exon terminal exonshort intron

9 32 6
internal

3’
content
model

initial exon

model
initial content

model
exon content

model
branch point

model
exon content

model
initial content

single exon gene

model
exon content

3

codon
stop

non−coding
model

coding
non−

non−coding
model

model

intial
pattern

201111

motif
translation initiation

model
non−coding

3

≥ 0≤ 4 ≤ 5 ≤ 4≤ d

≤ 15 ≥ 0

≥ 0

≥ 0≤ 15

≤ 4

≤ 4

Figure 3.5: Example of a gene with 3 coding exons (above) and an intron-less gene (below).

Certain parts of the DNA sequence are modeled using certain submodels. Below each part

is written its length in the human version of the program and the name of its submodel.

state submodels

Esingle translation initiation motif, start codon, initial pattern,

initial content model, exon content model, stop codon

Ejinit translation initiation motif, start codon, initial pattern,

initial content model, exon content model

Ej initial pattern, exon content model, internal 3’ content model

Ejterm initial pattern, exon content model, stop codon

IR non-coding model

DSSj dss model

ASSj branch point model, ass model

Ijshort non-coding model

Ijfixed non-coding model

Ijgeo non-coding model

Table 3.1: For each forward state the submodels used to define the sequence distribution

are shown in order. For the reverse strand states the order of the submodels is reversed.

The submodels of the exon states may have a variable length indicated in Figure 3.5.

3.2. DEFINITION OF THE GHMM AUGUSTUS 33

If the length ` of a sequence emitted in such a state is large enough, then the sequence

lengths covered by the submodels with bounded lengths are chosen maximal and the exon

content model has the remaining length. Example: If the sequence length of a (human)

initial exon state is ` = 100 the first 20 bases are emitted using the translation initiation

motif, the next 3 bases are emitted using the start codon model, the next 4 using the

initial pattern model, the next 15 using the initial content model and the remaining 58

bases are modeled using the exon content model. If ` is not long enough for all submodels

to have maximal length then some submodels model only shorter sequences. Then the

exon content model is not used (length 0) and among the other submodels with variable

length the priority goes from left to right, meaning that from left to right the submodels

are used for as many bases as possible until all bases of the given length are emitted.

Example: If the sequence length of a (human) initial exon state is ` = 25 the first 20 bases

are emitted using the translation initiation motif, the next 3 bases are emitted using the

start codon model, and the remaining 2 bases by the initial pattern model.

In order to define the sequence distribution for each submodel we made use of es-

tablished models such as Markov chains, a higher order windowed weight array model

(WWAM) ([BK97]), interpolated Markov Models (IMM) and introduced a simple method

we call similarity-based weighting of sequence patterns.

A WWAM of order k and of window size 2r + 1 is an inhomogeneous Markov chain

X1, X2, . . . of order k on the state space {A,C,G, T} in which the probability of observing

nucleotide xi at position i given that the preceding k nucleotides are xi−k, . . . , xi−1 is

estimated by the relative frequency of observing xi after nucleotides xi−k, . . . , xi−1 in the

training data at one of the positions in the window i− r, . . . , i+ r. For that purpose the

training data is aligned with respect to the biological signal that is modeled. Formally, let

sp,q be the nucleotide in the p-th row and the q-th column of the alignment of the training

sequences. Then

P (Xi = xi |Xi−k = xi−k, . . . , Xi−1 = xi−1)

:=
|{(p, q) | i− r ≤ q ≤ i+ r, sp,q = xi, sp,q−k = xi−k, . . . , sp,q−1 = xi−1}|

|{(p, q) | i− r ≤ q ≤ i+ r, sp,q−k = xi−k, . . . , sp,q−1 = xi−1}|

By an interpolated Markov Model (IMM) of order k ≥ 2 we denote a Markov chain

X1, X2, . . . of order k on the state space {A,C,G, T}, in which for some sequence pat-

terns xi−k, . . . , xi−1, the probability of observing nucleotide xi after that pattern was

estimated as if the chain was of only of order k−1. An IMM can be both homogenous and

inhomogeneous. We here use a special case of the IMM described in [SDSO98], in which

only the transition probabilities of orders k and k − 1 are considered and the respective

interpolation weights are either 0 or 1. The idea behind this model is that it is usually

better to use a higher order Markov chain as long as the amount of training data allows

a reliable estimation of the parameters. However, in practice, the amount of available

3.2. DEFINITION OF THE GHMM AUGUSTUS 34

data for estimating an individual transition probability out of a pattern depends strongly

on that pattern. The conditional probability of observing nucleotide xi after nucleotides

xi−k, . . . , xi−1 is

P (Xi = xi |Xi−k = xi−k, . . . , Xi−1 = xi−1)

=







#(xi−k,...,xi)
#(xi−k,...,xi−1)

if #(xi−k, . . . , xi−1) ≥ 400;

#(xi−k+1,...,xi)
#(xi−k+1,...,xi−1)

otherwise.

Here the character # in front of a pattern denotes the frequency of the pattern in the

training sequences (in the appropriate reading frame if applicable). The sequences were

each weighted with an integer factor between 1 and 10 according to their GC content.

The threshold 400 was chosen empirically. We added a pseudo count of 5 to all pattern

frequencies of k + 1-mers. (Or, equivalently, we added 5 sequences which each contain all

k + 1-mers exactly once to the training set.)

The submodels are:

translation initiation motif: WWAM of order 3 and window size 5 for the 20 bases

before the translation start.

start codon: Emit ATG with probability 1.

initial pattern: Emit pattern p of length at most 4 with the probability given by the

relative frequency of this pattern in the corresponding reading frame among all coding

sequences of the training set. The pattern has length 4 unless the exon length allows only

shorter patterns. The reason for introducing this submodel is a technical one. If it was left

out then the probability of the first bases after the start codon or after the acceptor splice

site would be directly determined with a Markov model and therefore the nucleotides of

the start codon or splice site would determine the emission probabilities of the following

bases. But the start codon and splice site bases are always or often the same and an

exception as far as typical coding sequences are concerned.

initial content model: interpolated 3-periodic Markov model of order 4. The length

of the emitted sequence is 15 if the exon length allows it. The model is trained on the

corresponding 15 nucleotides of single and initial exons of the training set. We also tried

a corresponding terminal content model in the region around the stop codon as this was

suggested by a bias in the distribution of these bases compared to the models we actually

use. However, this model did not yield any improvement.

exon content model: interpolated Markov model of order 4 trained on all corresponding

coding sequences of the training set. Only in earlier stages of AUGUSTUS, when we used

fewer submodels, the order 5, which is commonly used in other programs, yielded better

results.

DSS model: We only consider canonical splice sites obeying the GT-AG rule as this

rule accounts for about 99% of mammalian splice sites [BSS00]. The donor splice site

3.3. STATISTICS OF SELECTED SUBMODELS 35

model emits the 3 last nucleotides of the exon, then the consensus dinucleotide GT, and

4 more nucleotides of the intron (Drosophila: 2 before, 4 after GT). For the distribution

of the 7 free nucleotides we use a model we call similarity-based sequence weighting. The

method of similarity-based weighting of sequence patterns is as follows. Given a fixed

sequence pattern size, training patterns q1, . . . , qm and a similarity scoring function s,

weighting pairs of patterns, we estimate the probability that a random pattern equals a

given pattern q as

p(q) = c
m
∑

i=1

s(q, qi),

where c is chosen so that the sum of all p(q) is 1. The choice of s depends on the particular

purpose. For the donor splice site we use

s(r, q) =















1 if r = q;

0.001 if r and q differ at exactly one position;

0 otherwise.

This way, sequences obtained by a single point mutation from a typical splice site get

a bonus in comparison with the empirical distribution. The resulting distribution is the

discretely smoothed empirical distribution. When sufficiently much data is available for

estimation, the empirical distribution respects the complicated statistical dependencies

that exist between the nucleotide positions.

non-coding model : Markov model of order 4 trained on all non-coding sequences of

the training set.

branch point model: WWAM of order 3 and window size 7 emitting 32 nucleotides.

ass model: The acceptor splice site model emits 3 nucleotides of the intron before the

AG dinucleotide consensus, then AG and the first nucleotide of the exon. A pattern of

the 4 free nucleotides gets as probability the relative frequency of these 4 nucleotides at

the corresponding positions in the training set.

internal 3’ content model: interpolated 3-periodic Markov model of order 4 trained

on the 5 nucleotides at positions -8 to -4 with respect to the donor splice site using all

internal exons in the training set. Observe that this model, which helps locating the donor

splice site, makes use of the reading frame of the coding nucleotides as opposed to the DSS

model for nucleotides -3,-2 and -1. This model is not used for Drosophila.

stop codon: Emit TAG, TGA or TAA with probabilities 24%, 48% and 28%, respectively.

3.3 Statistics of Selected Submodels

In this section three of the submodels of AUGUSTUS are described.

3.3. STATISTICS OF SELECTED SUBMODELS 36

Initial Content Motif

The first coding nucleotides of a gene may have a different distribution than the overall av-

erage of all coding sequences. This has been exploited before by the author of GENSCAN.

We have compared the amino acid frequencies of the coding sequences with the amino acid

frequencies of the first 5 codons of a genes using the human and a Drosophila training set.

Let Ni be the frequency of amino acid i (i = 1, . . . , 20) in the protein sequences of the

training set. And let ni be the relative frequency of amino acid i among the 4th through

8th amino acid of the protein sequences of the training set, i.e. the first 5 amino acids

after the start codon and the initial pattern model. The relative amino acid frequencies

and the relative synonymous codon frequencies in the human training set are shown in

Table 7 on page 94. To determine whether the observed difference in the two distributions

can have occurred by chance we carried out a χ2-test. Let N := N1 + · · ·N20 be the

overall number of amino acids in the training sequence and let n := n1 + · · ·n20 be the

number of amino acids among the 3rd through 7th of a gene. As N is very large (human:

N = 510980, fly:N = 239744) compared to n (human:n = 6420, fly:n = 2000) we assume

that pi := Ni/N is a sufficient approximation to the overall probability of amino acid i.

The χ2-test checks whether the sample (n1, . . . , n20) can have a multinomial distribution

with parameters p1, . . . , p20 by checking whether the statics

χ2 =
20
∑

i=1

(npi − ni)
2

npi

is significantly large. In both cases – human and fly – given the level of significance α = 0.01

we can reject the null hypothesis that the frequencies of the first 5 amino acids have the

same distribution as that of all amino acids. (p-values: p < 10−10 (human), p ≈ 0.0003

(fly)). We introduced the initial content motif because of this result and the fact that

the introduction of this submodel improves somewhat the accuracy of the predictions (see

Table 7.6). Remark: The codon usage at the terminal end of the amino acid sequence was

also found to differ statistically significantly from the overall average (data not shown) but

this fact could not be exploited to improve the prediction accuracy.

Branch Point Model

The branch point (branch site) is the position of a nucleotide adenine 10 to 50 base pairs

([Zha98], [SGH+98]) upstream of the 3’ end of an intron which interacts during the splicing

process with the guanine at the 5’ end of the intron. The consensus around the branch point

is weak, and no reliable computational method to identify its location is known. Figure

3.6 shows a pictogram of the branch point region of human and Drosophila, respectively.

The 32 bases covered by the branch point model of AUGUSTUS are shown. These are

positions -37 to -6 relative to the acceptor splice site position (the rightmost position of the

3.3. STATISTICS OF SELECTED SUBMODELS 37

intron has position -1). The graphs show that the base composition continuously changes

within this region. For example, in both species there is a tendency of observing thymine

from left to right in increasing frequency. What the pictograms not show is a special

sequence composition which helps identifying the branch point.
Compositional profile of /usr/local/apache/htdocs/pictogram/17176210371111014/seq.txt

A
G
T
C

A
G
T
C

A
G
T
C

A
G
T
C

A
G
T
C

A
G
T
C

A
G
T
C

A
G
T
C

A
G
T
C

G
A
T
C

G
A
T
C

G
A
T
C

G
A
C
T

G
A
T
C

G
A
T
C

G
A
T
C

G
A
T
C

G
A
C
T

A
G
C
T

G
A
T
C

A
G
C
T

A
G
C
T

A
G
C
T

A
G
C
T

A
G
C
T

A
G
C
T

A
G
C
T

A
G
C
T

A
G
C
T

A
G
T
C

A
G
T
C

A
G
T
C

Pos: -1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Compositional profile of /usr/local/apache/htdocs/pictogram/17170410371110567/seq.txt

G
C
T
A

G
C
A
T

G
C
T
A

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
T
A

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
A
C
T

G
A
C
T

G
A
C
T

G
A
C
T

G
A
C
T

G
A
C
T

G
A
C
T

G
A
C
T

Pos: -1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 3.6: The relative frequencies of the bases at positions -37 to -6 relative to the

acceptor splice site position in human (above) and Drosophila (below). The size of the

letters is proportional to the frequency of the base and bases are ordered according to

this frequency from top to bottom. The high frequency of pyrimidines (T and C) close

to the 3’ splice site corresponds to the polypyrimidine tract known to play an important

role in human pre-mRNA splicing [CSP97]. This graph was created using Pictogram

(http://genes.mit.edu/pictogram.html) by Chris Burge.

As the distance of the branch point to the acceptor splice site is variable, a position specific

weight matrix, as is visualized by the pictogram, is a bad means to find a consensus

sequence of a signal. We counted for each species, for each of the 175 4-mers containing

at least one A and for each of the positions in the range of the branch point model the

number of occurrences of the 4-mer starting at the position in the respective set of training

sequences. The largest frequency had pattern CTGA at position -23 (human) and pattern

TAAT at position -19 (Drosophila). These patterns are consistent with the consensus

given in [LB01]. Figure 3.7 shows the distribution of these two patterns in this range.

The patterns are much more often observed around the mode of the distribution than

elsewhere and, indeed, the position of the pattern – if present at all – varies from intron

to intron. The same is true for other frequently observed patterns (data not shown). The

WWAM of order 3 and window size 7 that we chose to model this region accounts for both

the approximate distribution of positions of patterns of size 4 and the continuous change

in base composition. Again, the order and window size determine the balance between

modeling true details of the distribution (large order and small window size) on the one

hand and overfitting on the other hand and were chosen to maximize prediction accuracy.

3.3. STATISTICS OF SELECTED SUBMODELS 38

-36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6

20

40

60

80

100

pattern CTGA in the human branch point region

-36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6

10

20

30

40

pattern TAAT in the drosophila branch point region

Figure 3.7: Distribution of the positions where sequence patterns CTGA (left, human)

and TAAT (right, Drosophila) begin. The horizontal axis shows the position relative to

the 3’ end of the intron. The vertical axis shows the absolute frequency in the training set

of AUGUSTUS.

Internal 3’ Content Model

The internal 3’ content model is a model only used in the human version of AUGUSTUS,

for the 5 bases at positions -8 to -4 relative to the donor splice site (if -1 is the last position

of the exon). This model directly precedes the donor splice site model but can be thought

of as a part of the donor splice site signal model as it helps locating the splicing position.

The left side of Table 3.2 shows the relative frequency of the four nucleotides in this range

of 5 bases in the human training set. The nucleotides are broken down by their position

in the codon. A clear dependency on the reading frame is visible as is the case with

the overall nucleotide distribution in the coding regions shown in the right matrix. For

example in each of the two models the C is more frequent in the third codon position

than in the first two codon positions. Thus, as anticipated from the fact that these bases

are coding, a probabilistic model for these 5 bases in the [−8,−4]-window should take the

reading frame into account. On the other hand the distribution of the nucleotides in this

[−8,−4]-window is different from the distribution in the coding regions corresponding to

the exon content model: Three chi-square tests checking for each reading frame whether

the number of A, C, G and T’s in the [−8,−4]-window could be distributed as in the

exon content model on the right of Table 3.2 showed a significant deviation (p-values were

between 10−13 and 10−16). This is not much of a surprise, either. Some stretch of sequence

directly upstream of the donor splice site has two functions at the same time. It is both

coding and involved in splicing. The internal 3’ content model is a 3-periodic Markov

chain of order 4. As such it considers the distribution of sequence patterns of length 5

ending in the [−8,−4]-window and also the phase of the exon.

3.4. GC CONTENT DEPENDENT TRAINING 39

internal 3’ content model

f = 0 f = 1 f = 2

A 0.291 0.317 0.166

C 0.252 0.213 0.357

G 0.291 0.184 0.275

T 0.165 0.286 0.202

exon content model

f = 0 f = 1 f = 2

A 0.248 0.291 0.146

C 0.264 0.243 0.351

G 0.321 0.201 0.312

T 0.166 0.265 0.19

Table 3.2: Nucleotide frequencies at the three frame positions. f = 0, f = 1, f = 2: first,

second or third base of a codon. The left side table shows the distribution for the window

[−8,−4] relative to the donor splice site covered by the internal 3’ content model. The

right side shows the distribution for the bases modeled with the exon content model.

3.4 GC Content Dependent Training

The GC content of a sequence is the sum of the relative frequencies of the bases G and C

in the sequence. The composition of the bases varies along the human genome but there

are compositionally fairly homogenous regions of size at least 200 Kb, called ‘isochores’.

As Burge has pointed out in his thesis, many parameters of a gene prediction model

strongly correlate with GC content. Burge took this into account by using 4 classes of GC

content (< 43%, 43% − 51%, 51% − 57%, > 57%) and building 4 different parameter sets

by estimating most of the parameters only from sequences of the class. For a given input

sequence the model parameters of its GC class are more appropriate but were estimated

using only about one fourth of the training sequences. But for a reliable estimation of the

parameters a large enough training set is important.

We use a method that allows us to use even more GC content specific parameter sets

without the disadvantage of decreasing the training set size. We generate 10 different

parameter sets for different GC contents of the input sequence. However, for constructing

each of these parameter sets we use all sequences of the training set. In constructing a

parameter set for mean GC content α we weighed each sequence of the training set with

an integer weight 1 ≤ w ≤ 10 depending on its GC content β. Similar GC contents get a

higher weight. As a weight function we used

w(α, β) = d10 exp(−200(α− β)2)e (0 < α, β < 1)

(d. . .e means rounding up). We then trained the parameters as if each sequence was w

times in the training set (Burge’s method can be regarded as a special case in which

w(α, β) = 1 if α and β are in the same class and w = 0, otherwise). For the prediction

AUGUSTUS chooses for each input sequence the parameter set with mean GC content

closest to the one of the input sequence. The length distributions, transition probabilities

3.5. VARIANTS OF THE MODEL 40

and splice site models were trained independently of GC content. For all other submodels

there are 10 different versions.

3.5 Variants of the Model

The herein before mentioned model allows the prediction of any number of possibly partial

genes on both strands. No genes may overlap not even on opposite strands. But sometimes

a user may have additional information on the gene structure in the input sequence. For

instance, he may know from experiments that the sequence contains at least one gene. Or

he may want to find a gene within an intron of another gene and thus cannot assume that

genes do not overlap. For those purposes the model AUGUSTUS has variants which are

options to the program AUGUSTUS.

• “only predict complete genes”

By changing the transition probabilities such that

aqinit,IR = 1 and aq,qterm > 0 only for q = IR

we achieve that only parses which start and end in the intergenic region are possible.

Therefore no partial genes are predicted. Remark: The program GENIE, which also

bases on a GHMM, predicts no partial genes.

• “only predict complete genes – at least one”

In this variant we introduce a second state IR′ for the intergenic region which has

the same emission distribution as IR. The original IR then stands for the intergenic

region before the first gene and IR′ stands for all subsequent intergenic regions. A

parse is forced to start in IR and end in IR′. Once left, state IR is never entered

again and IR′ takes the role of the intergenic region. The transition probabilities

are changed as follows. Let A′ = (a′i,j)i,j∈Q+ be a new transition matrix. A′ is

equal to A except for the following entries: a′
qinit,IR

= 1, a′qinit,q
= 0 (q 6= IR),

a′
q,IR′

= aq,IR (q 6∈ {qinit, IR}, a
′
IR′,IR′

= aIR,IR, a′
q,IR = 0 (q 6∈ {qinit, IR},

a′
IR′,q

= aIR,q (q 6∈ {qterm, IR
′}, a′

IR′,qterm
= ε The transition matrix used in this

variant is A′ renormalized so that the sum of the transition probabilities out of each

state is 1. (This condition is only minimally violated by A′.)

• “predict exactly one gene”

In this variant AUGUSTUS predicts exactly one complete gene (if possible at all).

The transition matrix is the same as in the previous option with one change. The

only transitions allowed from state IR′ are into IR′ itself and to the terminal state.

This way all parses enter IR first, return to IR for some time, enter some ‘gene’

3.5. VARIANTS OF THE MODEL 41

states corresponding to one gene and enter the IR′, from which the terminal state is

reached.

• “ignore conflicts with other strand”

The standard model has been constructed to avoid a common error when predicting

genes on the two strands independently. A gene prediction program that searched

genes only on one strand, disregarding the opposite strand, tends to find ’shadow

genes’ in the vicinity of real genes on the opposite strand. This is because the Markov

chain model for the coding regions often yields also a relatively high probability for

the reverse complement of a real coding region. In order to avoid this error AU-

GUSTUS uses a technique proposed previously [BM93]: Using a competing model

for the reverse strand. This has also been implemented in GENSCAN where they

introduced ’shadow’ states for the genes on the reverse strand. This architecture en-

sures that predicted genes do not overlap, even on different strands. Usually the true

gene fits the model better than its ’shadow’ and therefore the parse corresponding

to the true gene has higher probability than the competing parse corresponding to

the shadow gene. Although this usually increases accuracy there may be cases when

one wants to ignore those conflicts of a gene structure with a gene structure on the

opposite strand; for example, in the case of a gene within an intron on the opposite

strand. With this option set, AUGUSTUS uses none of the reverse states. Only the

24 states of the upper half of Figure 3.1 including state IR are used. Then the genes

on the forward strand are predicted. The genes on the reverse strand are predicted

using the same model on the reverse complement of the input sequence and revers-

ing the prediction afterwards. The prediction output by AUGUSTUS simply is the

union of the predicted genes on both strands, which then may contain overlapping

genes.

While the previous three options and the standard option to predict any number of

(partial) genes exclude each other mutually, this option can be combined with the

others.

By default the program AUGUSTUS reports genes on both strands but it may also be

asked to report only the genes on one of the strands. Then the predicted genes on the

other strand are simply filtered out after the algorithms have been run.

Some of the test sets used for determining the accuracy of gene prediction programs contain

exactly one gene per sequence, as for example the test set h178 described in section 7.1.

When one of the three options where AUGUSTUS predicts only complete genes is set

the accuracy of AUGUSTUS’ predictions increases significantly on the test set h178. The

sensitivity on the gene level (see 7.3 for the definition) increases from 48% to 55%-58%.

The explanation for this is as follows. AUGUSTUS may predict a complete gene partially

3.5. VARIANTS OF THE MODEL 42

by missing for example the first exon only. With one of these options set AUGUSTUS is

’forced’ to find an initial exon if the other exons fit the model well. Although these options

elevate prediction accuracy we did not use them in the evaluation (section 7.3) because

we think that the setting, where nothing about the gene structure of the input sequence

is known, is more typical for applications.

Chapter 4

Further Analysis

4.1 A-Posteriori Probabilities and Sampling of Gene Struc-

tures

In AUGUSTUS there is a one-to-one correspondence between gene structures and parses.

We therefore identify a parse with the corresponding gene structure. For an input sequence

σ and a parse ψ let

p(ψ|σ) := P (ϕ(X,Y) = ψ |σ(Y) = σ)

denote the a-posteriori probability of the parse ψ given σ. And let

Θ(σ) := {parses ψ | p(ψ|σ) > 0}

be the set of all possible parses of sequence σ, in the sense that they have non-zero

a-posteriori probability. In AUGUSTUS Θ(σ) contains all parses corresponding to a pos-

sible gene structure of σ in the following, weak sense. The splice sites obey the minimal

dinucleotide consensus, genes start with a start codon, end with a stop codon, have no in-

frame stop codons within the exons, are reading-frame consistent and the exon and intron

lengths exceed a minimal length. Every gene structure that obeys these rules has non-zero

a-posteriori probability in AUGUSTUS. In this section we examine some properties of this

a-posteriori distribution on the set Θ(σ).

4.1.1 A-Posteriori Probability of the Predicted Gene Structure

The size of Θ(σ), which is the number of possible parses of σ, can be determined with a

dynamic programming algorithm similar to the ones described in the second chapter. We

determined the number of possible parses for all sequences in the human test set h178.

For example the average-length sequence σ with the name HSLCATG of length 6901, has

|Θ(σ)| ≈ 2 ·1085 possible parses. The longest sequence of length 86640 had about 2 ·101063

43

4.1. A-POSTERIORI PROBABILITIES AND SAMPLING 44

possible parses. As
∑

ψ∈Θ(σ)
p(ψ|σ) = 1,

a question that arises is, how equally or unequally the a-posteriori probabilities distribute

on this huge set of all possible parses. The predicted gene structure of sequence σ is

the one corresponding to the computed Viterbi parse ψvit and has the largest a-posteriori

probability

p(ψvit|σ) = max{p(ψ|σ)|ψ ∈ Θ(σ)}.

We computed these probabilities for the 178 sequences σ in h178, which are on average

about 7Kb long and contain one gene each.

As Figure 4.1 shows, the largest a-posteriori probabilities are not as small as might have

been expected. Half of the p(ψvit|σ) values are larger than 0.43. Even the smallest value

was almost 2 percent. Given the enormous size of the set Θ(σ), one can say that of-

ten a relatively large part of the probability mass lies in just one point of the set, the

Viterbi parse. The bottom picture of Figure 4.1 also shows that longer sequences have a

tendency to have a Viterbi parse with lower a-posteriori probability. This is intuitive as

sometimes several likely local alternatives in the gene structure at different positions can

be independently combined.

4.1.2 A-Posteriori Probability of the True Gene Structure

Another naturally occurring focus of interest is the a-posteriori probability of the true

gene structure. We call the unique parse corresponding to the true gene structure of the

input sequence the induced parse ψind. Of course, the hope is that the Viterbi parse and

the induced parse are identical. But if not, one may hope that at least p(ψind|σ) is close to

p(ψvit|σ). One advantage of this is that then the true gene structure has a high probability

of getting sampled. And the other advantage of p(ψind|σ) being close to p(ψvit|σ) is that

then a small change of the model and therefore a change of the a-posteriori distribution

of parses might have the effect of turning ψind into the Viterbi parse. The same hope

applies to the integration of extrinsic information. If the true gene structure is not much

less likely than the (false) predicted gene structure, then the change in the a-posteriori

distribution, that the integration of the extrinsic information means (see chapter 5), has

a better ’chance’ of ’making’ the prediction for this sequence correct.

If ψind ∈ Θ(σ) we define

q(σ) :=
p(ψvit|σ)

p(ψind|σ)

to be the error quotient for sequence σ. The error quotient is always at least 1. If q(σ) = 1

the induced parse is a Viterbi parse which means that the predicted gene structure is

correct, provided the Viterbi parse is unique (this seems to be usually the case). The

4.1. A-POSTERIORI PROBABILITIES AND SAMPLING 45

0.2 0.4 0.6 0.8 1

5

10

15

a-posteriori probabilities of Viterbi parses

0.2 0.4 0.6 0.8 1
probability

20000

40000

60000

80000

length sequence length versus a-posteriori probability

Figure 4.1: Above: A histogram of the 178 a-posteriori probabilities of the predicted gene

structures in test set h178. Below: A scatterplot of the pairs (pi, `i), where pi is the

a-posteriori probability of the predicted gene structure of the i-th sequence and `i is the

length of the i-th sequence. The correlation coefficient is ρ ≈ −0.40.

following table shows a summary of the error quotients for the sequences in the test set

h178.

error quot. q = 1 1 < q ≤ 2 2 < q ≤ 10 10 < q ≤ 1000 1000 < q ≤ 1010 q ≥ 1010

num. seqs 78 13 24 26 28 9

In 78 cases the predicted gene structure was identical to the true gene structure, i.e. the

annotated gene of the test sequence was correctly predicted and no other genes or exons

were predicted in that sequence. The largest error quotient was 4 · 10187. This belongs

to a 47Kb sequence (HSU34879) with an annotated six exons gene. This gene is actually

correctly predicted by AUGUSTUS but also 4 additional non-annotated genes on both

strands. We believe the annotation is incomplete in this case because there are also very

high scoring blastx hits against the nr database in the range of the additional predicted

genes. The second largest error quotient of 5 · 1093 belongs to a sequence (HSADH6)

with a gene with 8 annotated exons, of which all 7 introns have the unrealistic short

length 25. The third and fourth largest error quotients of 1.27 · 1040 and 2.05 · 10−31,

4.1. A-POSTERIORI PROBABILITIES AND SAMPLING 46

respectively, belong to annotations (of sequences HSADH6, HSUSF2) that have previously

been reported as wrong [YLB01]. Above examples show that the error quotient is possibly

useful for detecting wrong annotations.

In order to value the magnitude of the error quotient that can be overcome by a change

in the model parameters we made the following experiment. We changed the order of the

Markov chain in the exon model from 4 to 5, reestimated the Markov chain parameters

and left everything else unchanged. Let p′(φind|σ) be the a-posteriori probability of the

true gene structure in this slightly changed model. Let A+ = {σ ∈ h178 |p′(φind|σ) >

p(φind|σ)} be the set of sequences in h178 where the change increased the a-posteriori

probability of the true parse. This was the case for |A+| = 66 sequences. Then the

geometric mean of the relative increase in the a-posteriori probability was





∏

σ∈A+

p′(φind|σ)
p(φind|σ)





1/|A+|

≈ 3.54

The largest relative increase was 2 · 105, most were below 1000. We have the hypothetical

aim of making changes to the AUGUSTUS model or its parameters such that all predictions

become correct. From this result we draw the following conclusion. A part of the wrong

predictions with smaller error rates (maybe below 1000) can theoretically be corrected by

small adept changes to the model parameters. But another part of the wrong predictions

with very high error rates (maybe above 1000) can only be corrected by a drastic change

of the model.

4.1.3 Sampling Gene Structures

The sampling algorithm is one method to find several parses with high a-posteriori proba-

bility without additional memory usage in addition to the forward table. In AUGUSTUS,

after the forward table has been computed, 20 runs of the sampling algorithm take about

the same time as the Viterbi algorithm. A sampling algorithm has been used by [CP03] in

their program SLAM to predict genes in alternative splice forms. We have not examined

whether the different sampled parses of AUGUSTUS could correspond to alternative splice

forms. Instead we addressed the question whether sampling could help in predicting one

given gene structure. Suppose we had a method that could decide for a given small set

of at most k possible gene structures which contains the true gene structure, which of the

gene structures in the set is correct. Then we could run the sampling algorithm to produce

this set of likely gene structures first and then apply the method afterwards.

On test set h178 we tried the following. For each sequence we ran the sampling algorithm

1000 times and took the (at most) k parses of largest a-posteriori probability within

the sampled parses. The a-posteriori probability was computed using Theorem 2.6. We

4.2. IMPROVING STATE MODELS CAN WORSEN THE OVERALL MODEL 47

discarded parses that had been sampled before and sorted the parses according to their

a-posteriori probability. Let g(k) be the fraction of the 178 test sequences where the set

of the k most likely parses contained the induced parse. We got

k 1 2 3 4 5

g(k) 43.8% 54.5% 58.4% 62.9% 64.6%

For example one could raise the fraction of correctly predicted parses from 43.8% to 54.5%

if one had a method of picking the correct gene structure out of a choice of two.

4.2 Improving State Models Can Worsen the Overall Model

In a GHMM the sequence emitted by a state usually corresponds to a part of the sequence

which has some structural meaning. For example, a donor splice site state in AUGUSTUS

corresponds to a biological donor splice site sequence. The emission distribution of a

state defines a stochastic model itself, which we refer to as the state model of that state.

For example, the donor splice site state defines a (stochastic) model of donor splice site

sequences. In this section we do not consider the case when the emission distribution also

actually depends on the previous state and the previous emission. Then the prediction

performance of a state model can be separately evaluated. We leave it open at this point

how exactly the ’prediction performance’ of a state model should be measured. In fact

there are many papers separately examining and comparing the prediction accuracy of

splice site models (e.g. [PLS01]). There are also papers examining the prediction accuracy

of promoter sequences, translation initiation sites ([Hat02]) and coding regions ([FT92]).

There also is a paper ([TDZ01]) about a program that predicts only 3’-terminal exons.

The intention behind most of these efforts is: One hopes that improving such a model of

a part of the gene – in the sense of increasing its isolated prediction accuracy – will also

improve the gene model when this model is integrated. The following toy example shows

that this intuition can be wrong in the case where a stochastic state model is integrated

in a GHMM.

Suppose the actual sequence data was distributed according to the following ’true’ GHMM

shown in Figure 4.2. The alphabet is Σ = {0, 1}. States E and F , which are equally likely,

both emit a binary sequence of length 10. In state E the emission distribution is as follows.

With probability 0.75 the 10 letters are independent Bernoulli distributed with probability

p1 = 0.2 for letter 1 and p0 = 0.8 for letter 0. And with probability 0.25 the 10 letters are

independent Bernoulli-distributed with probability q1 = 1 for letter 1 and q0 = 0 for letter

0. So, either the letter 1 is relatively unlikely at each position in the word or all letters are

1. Formally, for an emission string σ = σ1, . . . , σ10 of length 10 the emission probability

4.2. IMPROVING STATE MODELS CAN WORSEN THE OVERALL MODEL 48

F

E
1

1

qterm

1
2

1
2

qinit

Figure 4.2: A toy GHMM

in state E is

eE(σ) := eqinit,E,ε(σ) = 0.75
10
∏

i=1

pσi
+ 0.25

10
∏

i=1

qσi
.

In state F emission distribution is independent Bernoulli-distributed with probability r1 =

0.1 for letter 1 and r0 = 0.9 for letter 0.

eF (σ) := eqinit,F,ε(σ) =
10
∏

i=1

rσi

If an emission σ has been emitted from E we say it is of type E, otherwise it is of type

F . Let X ∈ {E,F} be the random type and Y ∈ Σ10 be the random emission of this true

GHMM. Observe that in this model every observed emission σ can have been emitted in

either of the two states. So there is no chance of faultlessly finding out whether σ is of

type E or F .

Now, consider the following two variants, named 1 and 2, of this true GHMM. These

variants can be thought of attempts to model the true but unknown distribution. The two

variants are identical to above true GHMM except for the emission distribution in state E.

For state E the emission distribution in the two variants is according to a Markov chain.

In variant 1 it is a Markov chain of order 0 (i.e. an independent and identically distributed

sequence) and in variant 2 it is a Markov chain of order 1. In both cases the parameters of

the Markov chain are as if they were estimated with the maximum likelihood method from

an infinite number of training examples of emissions of type E. The probability of letter 1

at any position in an emission of type E is t1 := 0.75 ·0.2+ .25 ·1 = 0.4 and accordingly the

probability of letter 0 is t0 = 0.6. The emission probabilities of an emission σ = σ1, . . . , σ10

in state E in the two variants are

e1E(σ) =
10
∏

i=1

tσi

e2E(σ) = tσ1

10
∏

i=2

mσi−1,σi
with transition matrix

(

m0,0 m0,1

m1,0 m1,1

)

=

(

0.8 0.2

0.3 0.7

)

4.2. IMPROVING STATE MODELS CAN WORSEN THE OVERALL MODEL 49

The exponent of e stays for the variant, either 1 or 2. In variant 1 this can be seen

as the best approximation of distribution eE with a 0th order Markov chain, and in

variant 2 this can be seen as the best approximation of distribution eE with a first order

Markov chain. But this unproven observation is not necessary for the point made with

this example. Observe that the first order Markov chain regards the dependencies between

pairs of positions of emissions of type E. For example, given that a certain letter is a 1,

the probability that any other letter is also 1 is high (70%) compared with the overall

probability of letter 1 (40%).

We claim that – separately seen – the 1st order Markov chain of variant 2 is a better

model for sequences of type E than the simpler model of variant 1. The concepts of ’being

better’ we apply are 1) the Kullback-Leibler distance and 2) the ROC curve.

1) The Kullback-Leibler distance (also called relative entropy) measures the predictive

accuracy of an estimated distribution by computing a discrepancy value between the true

distribution (here eE) and an estimated distribution (here e1E or e2E). Let

KL(eE , e
i
E) :=

∑

σ∈Σ10

eE(σ) log
eE(σ)

eiE(σ)
(i = 1, 2)

be the Kullback-Leibler distance between the true emission distribution of state E and one

of the two Markov chain approximations. Here, KL(eE , e
1
E) ≈ 2.41 > 1.26 ≈ KL(eE , e

2
E).

So the 1st order Markov chain of variant 2 is a better approximation to the true distribution

than the 0th order Markov chain of variant 1 with respect to this measure.

2) We examined how well the two variant models of type E strings perform in classifying

strings as either type E or not type E. Fix a variant model i ∈ {1, 2} of state E. The

classification process is as follows. Given a threshold α and a string σ ∈ Σ10, the string is

classified as type E if and only if eiE(σ) ≥ α. If σ is classified as type E and σ really is of

type E then this is counted as true positive (TP), if if is classified as type E but it really

is of type F then it is counted as false positive (FP). Let PPi(α) := {σ ∈ Σ10 | eiE(σ) ≥ α}

be the set strings classified as type E (predicted positive). We assume that the strings σ

are generated according to the true distribution and define for each of the two variants

the true positives and false positives rates as a function of the threshold:

TPi(α) := P (Y ∈ PPi(α)|X = E) =
∑

σ∈PPi(α)

eE(σ)

FPi(α) := P (Y ∈ PPi(α)|X = F) =
∑

σ∈PPi(α)

eF (σ)

As α decreases from 1 to 0 the true positive and false positive rates each increase in discrete

steps from 0 to 1. The ROC ’curve’ is a plot of the true positive rate against the false

positive rate for different thresholds. It is shown in Figure 4.3.

4.2. IMPROVING STATE MODELS CAN WORSEN THE OVERALL MODEL 50

0.2 0.4 0.6 0.8 1
FP

0.2

0.4

0.6

0.8

1

TP

Figure 4.3: The ROC curves for the models of state E. The blue (upper, dark grey)

curve is for variant 2, the orange (lower, light grey) curve is for variant 1. Up to a false

positive rate of about 0.42 the true positive rates of the two variants are equal. Then

σ = 1111111111 is introduced in PP2(α) which causes a jump in the true positive rate of

size 0.25. The state model of E of variant 2 has a better ROC curve than that of variant

1.

While the 1st order Markov chain is a better model for state E than the 0th order Markov

chain with respect to above two reasonable concepts of ’being better’, it actually is the

worse of the two models when integrated in the GHMM. Suppose we are given a random

emission Y of type X coming from the true model. Let Φivit(Y) be the Viterbi parse

of emission Y in model variant i ∈ {1, 2}. (In this example the Viterbi parse is always

unique.) Then the Viterbi parse is correct if it uses state X, i.e. if Φivit(Y) = ((X, 10)).

In that case the prediction is correct. This probability is

P (Φivit(Y) is correct) = P (eiE(Y) > eF (Y) , X = E) + P (eiE(Y) ≤ eF (Y) , X = F)

=
∑

σ s.t. ei
E(σ)>eF (σ)

eE(σ)/2 +
∑

σ s.t. ei
E(σ)≤eF (σ)

eF (σ)/2.

For the two variants the probabilities of a correct prediction are

P (Φ1
vit(Y) is correct) ≈ 71.1% and P (Φ2

vit(Y) is correct) ≈ 68.8%

Therefore the GHMM of variant 1 is better than the GHMM of model variant 2. (Compare:

The Viterbi parse of the true GHMM is right about 72.7% of the time. This is here also

the theoretical optimum achievable with any decision procedure.)

How could it happen that the better stand-alone state model is the worse model to be

integrated in the GHMM? There are two possible reasons why an input sequence can be

parsed correctly in variant 1 but incorrectly in variant 2. Either the sequence is of type E

4.2. IMPROVING STATE MODELS CAN WORSEN THE OVERALL MODEL 51

and the state model of E of variant 2 assigns a lower probability to the sequence as the

state model of E of variant 1. Or the sequence is not of type E and the state model of

E of variant 2 assigns a higher probability to the sequence as the state model of variant

1. An example of the first kind is the sequence 1010101010, which is more likely to be of

type E than of type F . Assume it was of type E. We have

e1E(1010101010) ≈ 0.00080, e2E(1010101010) ≈ 0.0000016, eF (1010101010) ≈ 0.0000059

So in this case, variant 1 makes the correct prediction but variant 2 does not.

A question arising is: Given two variants e1q and e
2
q of a state model of state q are there pos-

sibilities to decide which one yields better predictions when integrated in a given GHMM

without making the decision depend on the GHMM? As we have seen, the Kullback-Leibler

distance and the ROC curve are no such possibilities. A trivial condition on the two vari-

ants that ensures that the GHMM in the second variant is at least as good as in the first

variant is to demand that for every possible true positive example for a sequence emitted

in state q the probability of the second state model is at least as large as the probability in

the first state model, and that for every possible true negative example the probability of

the second state model is at most as large as the probability in the first state model. But

when all sequences can be both true positive and true negative as in the above example

this condition holds only if the two variants actually are the same. We have found no

decision method which is helpful in practice and believe that it usually depends on the

GHMM which state model is better.

A conclusion we draw is that one GHMM may perform better with a certain state model

and another GHMM may perform better when a different state model for that state is

used.

In the light of this conclusion we can understand why AUGUSTUS performs better with a

4th order Markov Model for the coding regions while GENSCAN and GENIE apparently

perform better with a 5th order Markov Model (see section 7.3.2).

Chapter 5

Using Extrinsic Information –

AUGUSTUS+ and AGRIPPA

The model described in Chapter 3 is designed for the prediction of genes solely based on

the DNA sequence. But often additional indication for a gene in certain regions of the

sequence can be acquired from elsewhere. We call that extrinsic information when the

source of the information lies beyond the sequence itself. The most important examples

are

• Match in a Protein database. A part of the DNA sequence which is similar to

an amino acid sequence of some protein when translated in one of the six possible

reading frames is by experience more likely to be coding itself. This holds even when

the protein is from a different organism. The ’nr’ database we used holds about 1.5

million amino-acid sequences.

• Match in an EST database. An EST (expressed sequence tag) is a short (mostly

300-500 bp long) piece of cDNA. cDNA is a DNA copy of the mRNA sequence of a

gene (the sequence in the middle level in Figure 1.1). An EST contains no intron

sequences. It consists of coding sequence and/or non-coding exons. Large publicly

available databases of EST sequences exist, too. A part of the input DNA sequence

that is both similar to an EST and in translation to an amino-acid sequence in the

database is also likely to be coding itself. The reliability here is larger than in the

case with only a protein similarity.

• Regions of varying levels of conservation in an inter-species sequence comparison.

When two sequences of two different species have collinear regions of high similarity

and other regions of low similarity this can be regarded as evidence that the regions

of high similarity correspond to functional parts of the sequence and therefore are

more likely to be coding.

52

5.1. THE METHODS OF OTHER PROGRAMS 53

• Anchor constraints of the user. The user may have certain information about a gene

in the sequence. For example she may know the position of the translation start

site beforehand or she simply wants to assume that a certain part of the sequence is

coding. In this case she can ’tide an anchor’ and force AUGUSTUS to predict only

gene structures which are consistent with her assumptions.

In the first three cases extrinsic information is insecure in the sense that the gene structure

might be different than indicated by the extrinsic information. Often a piece of extrinsic

information is also imprecise, for example a match in a protein database suggests an

exon in a certain region but the exact boundaries cannot be determined by the match.

This chapter deals with the incorporation of the insecure extrinsic information derived by

protein and EST database searches. The method used here allows to specify together with

a piece of information measures of its level of insecurity. This will automatically give a

possibility to let the user tide anchors, because those anchors can be regarded as secure

extrinsic information.

5.1 The Methods of Other Programs

Programs which adopt an extrinsic approach using sequence similarity information as

in the first three cases above are called homology-based as opposed to ab initio programs

which do not use this information. Many such programs exist and in [MSSR02] an overview

over 22 such programs is given listing their methods. The methods include spliced align-

ments between the input DNA on the one hand and a protein sequence (PROCRUSTES,

GENEWISE), a cDNA sequence (GeneSequer) or EST sequences (TAP [KRGS01]) from

a database on the other hand, cross-species alignments of homologous genomic DNA se-

quences (AGenDA [MRA+02], [RM02], [TRG+03], CEM [BH00]) and ad-hoc methods to

change existing ab-initio methods (SGP2 which bases on GeneID [PAA+03]).

In this section I will only describe methods to integrate extrinsic information into a pro-

gram based on a Hidden Markov Model.

The program GENIE ([KHRE97], [Ree00], [Kul03]) which is based on a GHMM integrates

protein and EST homology information. Some of the ESTmatches which indicate an intron

are used to anchor the gene structure prediction: ’The content sensor models for splice

sites and introns are modified such that the probability was artificially raised for these

so-called EST introns, effectively constraining the system to ensure that the introns were

correctly annotated according to the EST/cDNA evidence.’[Ree00]. Extrinsic information

from protein database matches were used to possibly raise the emission probability in an

exon containing the protein match. In doing so the match was either fully considered or

not at all. The emission probability of an exon which only partly covers the protein match

5.1. THE METHODS OF OTHER PROGRAMS 54

is not increased. Unfortunately, the method used to assign an emission probability to a

protein database match is not described in detail. The emission probability in regions

without database matches remains unchanged in comparison to the ab initio version.

The program HMMGene [Kro00] integrates – among others – protein and EST database

hits. As opposed to the ab-initio-HMMGene, the joint probability of a sequence of states

(parse) and the emission in the extended HMMGene, includes a factor for each base which

depends on the type of extrinsic information given at this base. For example for each base

of the input DNA sequence covered by a protein database match with 100% identity the

factor is twice as large in an exon state than in an intron state. Therefore a parse with an

exon including the region of the match gets a relative bonus of 2 to the power of the length

of the match when compared to a parse with an intron including the region of the match.

At positions which are not covered by a database match the factor is equal for all states

of the model. Therefore the absence of database hits does not influence the prediction.

Integrating EST matches with this method did not improve the prediction accuracy of

HMMGene noticeably. Krogh explains this as follows ’... the probability of the region is

this probability [above factor] raised to the power of the length of the match. ... for ESTs

experimentation with other types of length dependences is necessary.’

GENOMESCAN [YLB01] is an extension of GENSCAN [Bur97] which integrates BLAST

hits of the DNA input sequence in protein sequences. They use the following heuristic in

their program. The information given by a gap-less protein hit is reduced to the BLAST

p-value and a certain position, called centroid, in the middle of the range of the hit. The

authors of GENOMESCAN assume that the probability of a BLAST hit in a protein

database to be artifactual and therefore misleading is approximately the 10th root of its

p-value (for small e-values, below 0.01, the p-value and e-value are almost the same). A

parse complies with the hit when this centroid is a coding base in the parse. The emission

probabilities of parses of which comply with the information given by a BLAST hit with

p-value p receive a relative bonus factor which is in the order of p−
1
10 . Which means

for example that a BLAST hit with e-value 10−120 leads to a relative bonus factor of

approximately 1012 whereas a BLAST hit of e-value 10−10 leads to a bonus factor of only

approximately 10. In this case the small e-value has a bonus by a factor of 1011 larger

than the small e-value.

TWINSCAN [KFDB01] is a reimplementation of GENSCAN which additionally integrates

information retrieved from non-annotated DNA sequences from other species homologous

to the input DNA sequence (the third source of extrinsic information). For example, human

genomic sequences may serve TWINSCAN as informant sequences when predicting genes

in mouse input DNA sequences. BLAST is used to find high-scoring local alignments

of the input DNA sequence to informant sequences. Then each base of the input DNA

sequence is classified into one of three conservation categories (unaligned, matched or

5.2. EXTRINSIC INFORMATION ABOUT GENES 55

mismatched) according to the results of the BLAST searches. The model of TWINSCAN

then assigns a probability to each parsed DNA sequence together with the the parallel

sequence of conservation categories, called the conservation sequence. These two sequences

are considered to be independent and the distribution of the conservation sequence is that

of a fifth-order Markov chain depending on the state emitting the sequence. These Markov

Models for the conservation sequence were also trained on annotated sequences.

Another Hidden Markov model which uses homologous sequences from two species is DOU-

BLESCAN [MD02]. As opposed to TWINSCAN, this program simultaneously predicts

the gene structures of two DNA input sequences which are required to be orthologous

or paralogous (The genes diverged in evolution after a speciation or a duplication event,

respectively). The model uses a so-called pair HMM which emits two DNA sequences

instead of one. It has states corresponding to matching exons on both sequences, i.e. pairs

of homologue exons, which emit the DNA sequences of the exons in the two sequences

simultaneously codon by codon. And it has states corresponding to exons in one of the

sequences without counterpart in the other. Thus emitting codons of only one of the two

sequences.

5.2 Extrinsic Information about Genes

The extrinsic information we currently use as input to AUGUSTUS, is automatically gen-

erated by a program of Oliver Schöffmann, called AGRIPPA [Sch03]. The eponymous

Roman general Agrippa was an adviser and close associate of the Roman emperor Augus-

tus. This program is briefly described in the following section 5.2.1. In section 5.2.2 we

list the different types of extrinsic information we distinguish.

5.2.1 The Program Agrippa

AGRIPPA uses two databases to infer information about the coding regions in the input

DNA sequence. The whole protein database nr which contains (possibly partial) amino

acid sequences of proteins. The whole EST database dbEST which had about 5 400 000

entries for human and 260000 for Drosophila melanogaster in August, 2003. The program

bases on the local alignment search tool BLAST [AGM+90], which efficiently finds local

alignments of the input DNA sequence to a similar sequence in a large database. Before

such a database search is initiated, putative repetitive elements in the input DNA sequence

are masked using the program RepeatMasker (http://ftp.genome.washington.edu/RM/

RepeatMasker.html, unpublished results). Below we will use the word segment for a

(contiguous) subinterval of a sequence.

5.2. EXTRINSIC INFORMATION ABOUT GENES 56

Using protein database matches

When run on the protein database, AGRIPPA uses the results of a BLAST search (more

precisely: blastx with standard parameters) of the input DNA sequence against the

database. The hits reported by BLAST are local alignments between the input DNA

sequence and a target amino acid sequence, possibly with gaps.

AGRIPPA assumes that the segments of the input sequence that are aligned to segments

of the target amino acid sequence, are themselves predominantly coding. The reading

frame and the strand of the presumable coding parts can be determined by the alignment.

If the alignment contains a large enough gap in the target sequence this is considered

evidence for an intron in the input DNA sequence which is aligned to this gap. At the

boundaries of this gap the alignment is often of bad quality and not reliable. The same

holds if BLAST reported two local alignments of the same amino acid sequence to the

input DNA sequence, which overlap only in the amino acid sequence. Then possible splice

site pairs which obey the GT/AG consensus are searched for in the bordering region of the

presumable intron. That pair of possible splice sites is chosen and output as presumable

splice sites, that maximizes the number of identically matched amino acids in the alignment

in the neighboring coding regions defined by the choice of splice sites.

If the segment between two presumable splice sites found this way – acceptor site up-

stream, donor site downstream – has been aligned to a segment of the target sequence

a possible exon is output by AGRIPPA. If an alignment matches a segment of the input

DNA sequence to the target sequence and no evidence for splice sites was found at both

boundaries, this segment is considered to be part of a possibly larger coding exon, and

hence is output.

If an alignment matches a codon of the input DNA sequence to the first amino acid of some

protein in the database this is interpreted as evidence for a translation start site (start

codon) at this position in the input DNA sequence. Analogously, a possible translation

termination site is output if a stop codon in the input sequence follows directly downstream

of an alignment which aligns the last amino acid of a protein to the input DNA sequence.

Using EST database matches

When run on the EST database, AGRIPPA also uses the results of a BLAST search

(more precisely: blastn with standard parameters) of the input DNA sequence against

the database. In this case the local alignments are between two DNA sequences and

usually contain few mismatches and few short gaps. The strand (orientation) of an EST

is unknown. Also – as ESTs are parts of the whole cDNA – it is not known whether they

come from coding or non-coding parts (the so-called untranslated region) of the mRNA.

Again, if an alignment contains a long gap in the target EST sequence an intron is inferred

5.2. EXTRINSIC INFORMATION ABOUT GENES 57

and thus also two presumable splice sites. Then the strand is determined by the splice sites.

In AGRIPPA different local alignments which overlap in the input DNA sequence and do

not lead to contradicting intron information, are clustered to larger alignments which are

contiguous in the input sequence. Those alignments are filtered by the alignment score

and clipped off somewhat at the ends. Then segments of the input sequence which are

aligned without gaps to segments of an EST sequence and are bordered by two presumable

splice sites are output as possible exons. Those segments which are aligned to a segment

of an EST sequence but not bordered by presumable splice sites on both sides, are output

as possible parts of an exon.

There is a systematic error being made here. It is to due to the fact that ESTs can

theoretically only be used to infer the mRNA sequence of a gene. So this method also

finds presumable non-coding exons. Which part of that mRNA sequence is coding cannot

be derived by ESTs alone. Therefore, AGRIPPA also tries to verify which parts of the

partially reconstructed mRNA is coding by performing a protein database search with this

sequence.

Combining EST with protein database matches

After the EST database has been used to partially reconstruct the mRNA, each presumable

part τ of an mRNA sequence is searched against the protein database. In this search the

BLAST algorithm does not need to detect long gaps because τ does not contain introns.

The parts of τ which are aligned to an amino acid sequence are relatively likely to be

coding. Then the information from the original alignment of the ESTs to the input DNA

sequence can be used to infer a partial presumable intron/exon structure. Again, a protein

hit can be used to infer a translation start or stop site if the first or last amino acid of a

protein has been aligned, respectively. Figure 5.1 illustrates with an errorless example the

way Schöffmann concludes.

5.2.2 Types of Extrinsic Information

The types of extrinsic information retrieved this way are

1. start. A presumable translation start site of a gene; the start codon.

2. stop. A presumable translation termination site of a gene; the stop codon.

3. ASS. A presumable acceptor (3’) splice site of a gene.

4. DSS. A presumable donor (5’) splice site of a gene.

5. exonpart. A segment of the sequence presumably coding: part of an exon. The

actual exon may properly contain this segment or may be equal to the segment.

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 58

protein
match

EST
matches

DNA

retrieved
extrinsic
information

start DSS ASS
exonpartexon

1

Figure 5.1: The information retrieved from a combination of EST and protein database

searches. The input DNA sequence contains one gene of which the dark (red) boxes

are the coding parts. First ESTs matching the DNA sequence are found and clustered.

The concatenation of the segments of the input DNA sequence which are aligned to the

clustered ESTs is searched against a protein database. The protein match can be used

to infer which part of the EST consensus sequence was coding. In this example the

alignment of the protein started at the first position in its amino acid sequence. Thus a

likely translation start site (start) can be inferred.

6. exon. A complete presumable coding exon.

We will call an individual piece of extrinsic information a hint. Each hint has a grade which

is from a discrete set Gj corresponding to the type j ∈ {1, . . . , 6} from above enumeration.

The grade is assigned to the hint depending on the type of process leading to the hint

(e.g. protein, user anchor). It may for example also depend on the BLAST e-value, but we

chose to ignore that (see section 5.3.3). The grade will later help assessing the reliability

of the hint.

5.3 Extended Model - AUGUSTUS Takes Hints

5.3.1 Goals of the Modeling

Our aims in constructing a new model incorporating extrinsic information were the fol-

lowing.

Firstly, in the search for an optimal gene structure a gene structure which regards a hint

should get a ‘bonus’ over one that ignores this hint. Suppose S1 and S2 were two gene

structures that have equal a-posteriori probabilities in the ab initio model AUGUSTUS.

And suppose we had one single hint which supports S1 but not S2. Then in the new model

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 59

S1 should get a higher a-posteriori probability than S2.

Secondly, the bonus of a gene structure respecting a hint which refers to a range of the

input sequence (exonpart and exon) should – if at all – only moderately depend on the

length of that range. Experience showed that long matches of the DNA input sequence

in a protein or EST sequence are not much less likely to be misleading or artifactual than

shorter ones (section 5.3.3).

Thirdly, gene structures which only ’partially respect’ a hint which refers to a range should

not be rewarded at all. For example, exons covering only half of an EST match do not get

a bonus. If this exon was correct the EST would be wrong or belong to a different form

of alternative splicing.

Fourthly, the program should not be forced to regard an insecure hint, as this can be wrong.

(Advisors sometimes give ill counsel.) As Figure 5.2 shows, hints can be misleading. If the

a-posteriori probability of the most likely gene structure is very high in the ab initio model,

an uncertain hint which is incompatible with this gene structure should not necessarily

lead to a different prediction in the new model.

And fifthly, if actual genes usually are supported by extrinsic information, a gene structure

with genes for which there is no supporting extrinsic information should get a ‘malus’.

Suppose again we had two gene structures S1 and S2 which have the same a-posteriori

probability in the ab initio model and are equal except that S1 contains an additional

gene or exon that S2 does not contain. Further suppose that no extrinsic information

supports this additional gene or exon. Then S1 should have a lower a-posteriori probability

than S2 in the new model. This aim needs some explanation. Hints found through

database searches all support coding regions in some way. We follow the guideline: ’no

information’ is also information. As an example consider the extrinsic information of type

start. Suppose the reliability of the process generating the start hints was so high that for

almost all genes a start hint supporting it was given, and only a very small fraction of the

start hints was wrong. Then, intuitively, a predicted gene without supporting start hint

would be suspicious, because it would violate the practical experience that very rarely true

genes have no supporting hint.

Remark: While accomplishing the first aim tends to increase exon-level sensitivity by giv-

ing some exons a bonus, accomplishing the third aim tends to increase exon-level specificity

because some exons ’get punished’ through the malus and are therefore not predicted.

All of the programs mentioned in section 5.1 reach the first of these goals. Only GENOMES-

CAN reaches the second goal, since here, the extrinsic information referring to a range

is reduced to a single base. For the other programs, the relative bonus of a parse which

respects a homology on a certain range is a product over all bases/codons of that range

and approximal exponential in the length of that range. Only GENIE reaches the third

goal. All programs reach the fourth goal with one exception: GENIE is forced to respect

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 60

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

annotation
HSALIFA

hints

hints

hints

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

hints

hints

hints

annotation

Figure 5.2: Section of an input sequence containing one gene and extrinsic information.

The upper half of the graph refers to the forward strand, the lower half to the reverse

strand. The first line shows an annotated gene with three exons (black). No exons on the

reverse strand were annotated. The lines labeled ’hints’ show the extrinsic information

retrieved by AGRIPPA from the results of a BLAST search in a protein database. The

white boxes are exonpart hints, the two black boxes are exon hints. The grey (green if

viewed in color) triangles on the forward strand at 3753, and on the reverse strand at

498 and 608 are stop hints. The one on the forward strand coincides with the annotated

position. The right grey triangle on the reverse strand is a start hint and the grey ’half-

triangle’ on the forward strand at 2650 is a DSS hint at the correct position.

extrinsic information about introns. Only TWINSCAN reaches the fifth of our goals. In

the TWINSCAN model missing extrinsic information corresponds to a conservation se-

quence with the classification ’unaligned’, which is presumably more likely to be emitted

from non-coding states than from coding states. The other programs which have an ab

initio version behave as in the ab initio version, when no extrinsic information was found

in a region. The approach explained below has been chosen to attain above goals.

5.3.2 The extended Emission Alphabet

The input to a GHMM is a sequence which contains all information used by the Viterbi

and forward algorithm to assess possible underlying structures. It is therefore natural to

try to interpret the available information as sequence information. In the case of the first

four types of hints this is obviously possible. They contain a precise local information.

For example, ’at position 2650 on the forward strand is a DSS hint with grade Protein’

or ’at position 2651 in the input sequence is no DSS hint’. In the case of exonpart and

exon hints, which refer to a range in the input sequence, this is also possible but with a

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 61

notional trick. We assign the hint to the base at the right end of the range and let the

length of the range be part of the information given by the hint. This defines a one-to-one

correspondence between the exonpart intervals on the one hand and the end point and

the length on the other hand. For example, ’at position 1202 on the reverse strand is an

exonpart hint with length 705’ contains the same information as if we would have said that

the exonpart hint starts at position 498 and ends at position 1202. The exon hints are

also assigned to their rightmost position (including the splice site dinucleotide consensus,

if applicable).

In this way all the extrinsic information to a DNA sequence together with the input se-

quence can be regarded as one sequence over a new extended countable alphabet Σ′, which

is formally defined below. The emission of the extended GHMM then is a DNA sequence

together with an annotation of all extrinsic information belonging to this sequence.

For each type j ∈ {1, . . . , 6} let Gj be the set of possible grades. In the application given

here, G1 = · · · = G6 is a subset of the set {Manual,Protein,EST,Combined}, depending

on which sources of information actually have been exploited. The grade is the source of

the extrinsic information: manual anchor, protein homology, EST homology or combined

EST and protein homology. These sets Gj can be extended as needed. Let the special

letter t (pitchfork) denote ’no special hint’, let ’½’ and ’¾’ stand for the forward strand

and the reverse strand, respectively. Define

Fj := (Gj × {½,¾}) ∪ {t} (j = 1, 2, 3, 4)

and

Fj := (Gj × {½,¾} × N× {0, 1, 2}) ∪ {t}. (j = 5, 6)

Then

Σ′ := Σ×F1 ×F2 ×F3 ×F4 ×F5 ×F6

is the extended emission alphabet of the new model. Let (b, f1, f2, f3, f4, f5, f6) ∈ Σ′ be

the ’extended letter’ observed at position i of the emitted sequence. This is interpreted in

the following way.

b ∈ {A,C,G, T} is the nucleotide at position i in the DNA sequence.

f1 specifies the start hint belonging to position i. If f1 =t, then no special start hint is

observed at position i. And if f1 = (g, d) with g ∈ G1, d ∈ {½,¾} then a start hint about

a start codon on strand d (direction) with grade g ending at position i is given.

f2, f3 and f4 specify the stop, ASS and DSS hint belonging to position i in the same way

as f1 specifies the start hint.

f5 specifies the exonpart hint belonging to position i. If f5 =t, then no special exonpart

hint is observed at position i. Otherwise, let f5 = (g, d, `, r). g is the grade of the hint, d

is the strand and r ∈ {0, 1, 2} defines the reading frame. ` is the length of the exonpart

interval and the exonpart interval goes from bases i− `+ 1 to i.

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 62

f6 specifies the exon hint belonging to position i in the same way as f5 the exonpart

hint. Note that i− `+ 1 and i are the left and right end of the exon hint interval, which

includes the splice site consensus dinucleotides if the boundary of the exon is a splice site.

The exonpart interval boundaries may therefore differ a little from the boundaries of the

biological exon.

With this extended alphabet Σ′ the whole information given by the input DNA sequence

and the extrinsic information of the six types obtained through the database searches

can be regarded as a string over Σ′. To each given hint of type j corresponds exactly

one position in the sequence where the component fj of the observed extended letter

(b, f1, f2, f3, f4, f5, f6) is different from t.

Remark: We allow at most one hint per position per type. If the process generating the

hints produces multiple hints we delete all but one. However, multiple hints at the same

position of different types are allowed.

5.3.3 The extended Emission Distribution

The emission distribution e′ of the GHMM AUGUSTUS extended this way needs to be

redefined to account for the extended emission alphabet Σ′. We will call this extended

model AUGUSTUS+ (’plus advisor’). It is defined as the GHMM with the same state

space Q∗, the same transition matrix A (see chapter 3) but new emission probabilities

e′p,q,τ ′(σ
′) (p, q ∈ Q∗, τ ′, σ′ ∈ Σ′∗). Let q be the current state, p be the previous state,

and τ ′ ∈ Σ′∗ be the previous emission. Let τ be the previously emitted DNA sequence,

given by τ ′. The definition of the new emission distribution e′ was chosen to leave as much

as possible unchanged of the previous definition of e. The distribution of the DNA string

σ emitted in each state is the same as defined in chapter 3. The probability of an emission

σ′ = (σ1, f1,1, . . . , f1,6)(σ2, f2,1, . . . , f2,6) · · · (σn, fn,1, . . . , fn,6)

is the emission probability of the DNA sequence σ = σ1σ2 . . . σn times the product of the

probabilities P (Fk,j = fk,j) of the hint character for each position k and each type j:

e′p,q,τ ′(σ
′) = ep,q,τ (σ) ·

∏

1≤k≤n
1≤j≤6

P (Fk,j = fk,j).

Fk,j is the random hint – possibly t – of type j at the kth position of the emitted string.

It does not depend on the previous state but it may depend on q, τ and σ.

Before we specify the probability P (Fk,j = fk,j) of a hint, we introduce some new terms.

A full piece of extrinsic information is given by a hint f 6=t, its position i, and the type

j. For brevity, in cases where the position and type are clear, we will sometimes refer to

the whole information as ’hint f ’, instead of ’hint f of type j at position i’. Whether the

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 63

hint is consistent with a parse depends only on that step in the parse, where position i is

emitted. Let q be that state, emitting the sequence from positions a to b with a ≤ i ≤ b

in one step. The hint f is said to be respected by the the parse if and only if the gene

structure corresponding to the parse is compatible with the hint of type j given by f at

position i. For each type j this compatibility has a specific meaning.

For the start type (j = 1) this means that q is an initial or single exon state and the

rightmost position of the start codon emitted in state q is exactly the position i of the

hint.

Similarly, a stop, ASS or DSS hint at position i is respected by the parse if the position

of the stop codon, the acceptor splice site or the donor splice site defined by q, a and b

correspond to that hint.

For an exonpart hint f = (g, d, `, r) of length `, strand d and reading frame r, f is respected

by the parse if q is an exon state on the strand given by d, if b, i and the reading frame of

q match r correctly and if the interval of positions (i− `, i] is contained in the interval of

coding bases corresponding to q.

When f = (g, d, `, r) is an exon hint, f is respected by the parse if, again, the strand

and reading frame given by q, a and b match the strand and reading frame of f and the

boundaries of the biological exon corresponding to q, a and b match exactly the boundaries

of the biological exon corresponding to i, ` and q.

Observe that the statement ‘parse φ respects hint f at position i’ is even well defined if

only an initial part of φ is specified, as long as sequence position i is included in this initial

part.

When the (presumably) true annotation is given, we call the parse corresponding to the

true gene structure the true parse. For each hint retrieved from the database searches

using a training set we know, whether it was respected by the true parse or not. We call

those hints good or bad, respectively.

A parse ψ supports type j ∈ {1, 2, 3, 4, 5, 6} at position i in DNA sequence σ if and only

if some hint f of type j is respected at i. Examples: A parse supports the start type at

position i if in the gene structure given by the parse a start codon ends at i. A parse

supports the exonpart type at all coding positions.

Let 1 ≤ j ≤ 6 and f be a hint of type j, let ρ ∈ Σ∗ be a DNA string. Then f is said to be

observable at position i in sequence ρ if and only if a minimal consistency condition for

the hint f of type j at position i in sequence ρ is satisfied:

j = 1. A start hint f = (g, d) is only observable if either d =½ and the string ’ATG’ ends

at position i in ρ or d =¾ and the reverse complement of the string ’ATG’ ends at

position i in ρ.

j = 2. A stop hint f = (g, d) is only observable if d =½ and a stop codon ends at position

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 64

i in ρ or d =¾ and the reverse complement of a stop codon ends at position i in ρ.

j = 3. An ASS hint f = (g, d) is only observable if d =½ and the string ’AG’ ends at

position i in ρ or d =¾ and the reverse complement of ’AG’ ends at position i in ρ.

j = 4. A DSS hint f = (g, d) is only observable if d =½ and the string ’GT’ ends at position

i in ρ or d =¾ and the reverse complement of ’GT’ ends at position i in ρ.

j = 5. An exonpart hint f = (g, d, `, r) ∈ F5 is only observable if the substring ρ(i − `, i]

contains no stop codon in the reading frame given by r on the strand given by d.

j = 6. An exon hint f = (g, d, `, r) ∈ F5 is only observable if the substring ρ(i−`, i] contains

no stop codon on the strand given by d in the reading frame given by r and one of

the following minimal consensus conditions holds. If d =½, at position i− `+1 the

substring ’ATG’ or ’GT’ must start and at position i a stop codon or the string ’AG’

must end. If d =¾, at position i− `+ 1 the reverse complement of a stop codon or

the string ’AG’ must start and the reverse complement of ’ATG’ or ’GT’ must end

and at position i in ρ.

With this definition a hint which is not observable contradicts biological knowledge or is

a rare exception we do not account for. We consider only observable hints, because parses

respecting non-observable hints have zero probability in AUGUSTUS anyway. Then every

respected hint is observable.

For the first four types, the strand of an observable hint is determined by the sequence

and the position. For example, for the start type it is not possible that both an ATG and

the reverse complement of an ATG are at the same position in the sequence. Therefore,

apart from the grades, there is at most one observable hint of type j ∈ {1, 2, 3, 4} possible

at each position.

Let p+j and p−j be discrete probability density functions on Gj and let r+j ≥ 0 and r−j ≥ 0

be constants to be specified below (j ∈ {1, . . . , 6}). We are now ready to define the

probability with which an individual random hint Fk,j , emitted in the current state, takes

a value f 6=t. Let ρ be the DNA sequence emitted so far, including the sequence emitted

in the current state. Let g be the grade of f , let j be the type of f and let i be the position

of the hint in ρ.

P(Fk,j = f) =















p+j (g)r
+
j if f is respected by the parse;

p−j (g)r
−
j if f is observable at i in ρ but f is not resp. by the parse;

0 if f is not observable at i in ρ.

(5.1)

p+j (g) is the probability that a respected hint of type j has grade g and p−j (g) is the

probability that an non-respected hint of type j has grade g. The constants r+j and r−j

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 65

and the distributions p+j and p−j of the grades were estimated from a training set (see

section 7.2).

According to this definition, the probability of a hint depends only on its type, on its grade,

on whether the hint is respected by the parse and on whether it is observable. In practice,

r+j > r−j and hints which are not respected by the parse, but observable, get a relatively

small probability. This accounts for those hints which are bad. They are less likely but

still possible, so that the parse has the ’chance’ of ignoring them. The hints which are

respected by the parse are usually relatively likely compared to the non-respected hints.

Remarks: 1) The attentive reader has noticed that for those exons followed by a splice site

not the whole coding sequence of an exon is emitted in the exon state but a few coding

bases and the GT are emitted from the DSS state. In those cases we let the exon state

emit the exon and exonpart hints for these bases instead of the DSS state. This is possible

as the position of the splice site is already determined by the emission in the exon state.

2) The constants r+j and r−j turn out small enough that under reasonable assumptions on

the maximal length of open reading frames P (Fk,j =t) = 1−
∑

f∈Fj\{t} P (Fk,j = f) > 0.

Often, P (Fk,j =t) will be close to 1.

Relevance of the length of hints

This section applies to hints of type exonpart and exon only. They refer to a range

of the sequence which is possibly homologous to some other (protein or EST) sequence

and can have a variable length. As mentioned above, several other programs indirectly

attribute great importance to this length because the emission probability from their ab

initio version is changed in the extrinsic version by a certain factor for each of the bases

of that range. Therefore the relative bonus in probability of a gene structure respecting

that hint is exponential in the length of that hint. This leads to a an extreme bias towards

respecting longer hints.

We examined using our human training set how the length is actually correlated with

the classification good hints versus bad hints. We consider only observable hints, i.e. in

particular, they are contained in an open reading frame. Figure 5.3 shows histograms of

the lengths of good and bad exonpart hints from protein and EST database searches. The

vertical axes are scaled to show probabilities. The length distribution of good and bad

exonpart hints from proteins are very similar and there is no reason to prefer respect-

ing long hints over shorter ones. For ESTs the two distributions are somewhat different.

Good exonpart hints tend to be shorter than bad ones. So if the only information about

an EST exonpart hint was its length, we should rather prefer short hints over long ones

because they are more likely to be correct. Despite this result that the length of the EST

exonpart hints actually provides some information in this case, we chose to not take this

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 66

200 400 600 800 1000 1200
length

0.001

0.002

0.003

0.004

probability
length distribution of
good exonpart hints HproteinL

500 1000 1500 2000
length

0.001

0.002

0.003

probability
length distribution of
good exonpart hints HESTL

200 400 600 800 1000 1200
length

0.001

0.002

0.003

0.004

probability
length distribution of
bad exonpart hints HproteinL

500 1000 1500 2000
length

0.001

0.002

0.003

probability
length distribution of
bad exonpart hints HESTL

Figure 5.3: The graphs on the left side show the length distribution of correct (top) and

incorrect (bottom) exonpart hints coming from a BLAST search in a protein database.

The graphs on the right side show these distributions for the search in an EST database.

An exonpart hint is considered correct only if it really is completely contained in the coding

sequence. For proteins, the length does not seem to contain any information about the

correctness. For ESTs there is the tendency that an EST hit is more likely to be correct

if it is shorter.

into account, because the effect is relatively weak. But if we had taken the lengths into

account by adding extra grades for different classes of lengths, the effect would be the

opposite of of what is achieved by other programs as HMMGene: Shorter hints would

have been preferred over longer ones. The lengths of good and bad hints of the type exon

also have similar distributions (data not shown) and were not considered for the prediction.

Relevance of the BLAST e-value

The hints retrieved from database searches were constructed from BLAST hits. Each

BLAST hit has a so-called e-value assigned to it, which has the following meaning. Initially,

BLAST-hits are assigned a score defined through a scoring matrix and gap penalties. The

score is the higher the more significant the hit presumably is. The BLAST search leading

to this hit was performed in some search space given by the input sequence and a database.

The e-value of a hit with score s is the expected number of hits with a score at least s in this

search space under the assumption that the sequences of the search space are independent

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 67

and randomly distributed according to some simple distribution model [KA90]. E-values

are nonnegative and the e-value is the smaller the larger the corresponding score is. We

used an e-value cutoff of 10, which means that for each BLAST hit used in the construction

of hints the expected number of hits by pure chance with this score or better was at most

10. Most e-values of the hits we used were below 1, many below 10−50. For a distribution

of the e-values leading to exonpart hints see Figure 5.4.

One might expect the following relationship between the e-values and the reliability of

hints: The smaller the e-value the less likely is it that the hint is bad. This has been

incorporated in the program GENOMESCAN by making the bonus of a gene structure

that classifies some middle point of the reported hit as coding, inversely proportional to

the 10th root of the p-value. This yields an extreme preference towards respecting BLAST

hits with a small p-value (and therefore e-value). In our examination of the hints reported

by AGRIPPA the distribution of the e-values of good hints of a type was very similar to

the distribution of e-values of bad hints of this type, for all 6 types. Figure 5.4 shows

a histogram of the e-values of n1 = 810 good and n2 = 295 bad exonpart hints derived

from protein hits with the training set e500. Astonishingly, the fraction of bad exonpart

hints with a small e-value (say less than 10−50) is almost the same as the fraction of good

exonpart hints with a small e-value. Based on these results it would not be reasonable

to prefer exonpart hints with a small e-value over ones with a larger e-value. Of course,

AGRIPPA has filtered and slightly modified the original BLAST hits, so there might be

a correlation between the e-values of the original BLAST hits and their classification as

good or bad. Distinguishing different grades for any of the types according to the e-value

did not improve prediction accuracy. Thus we chose not to do so.

1.·10-150 1.·10-100 1.·10-50 1
e - value

0.005

0.01

0.015

0.02

0.025

0.03

probability
distribution of e-values of
good exonpart hints HproteinL

1.·10-150 1.·10-100 1.·10-50 1
e - value

0.005

0.01

0.015

0.02

0.025

0.03

probability
distribution of e-values of
bad exonpart hints HproteinL

Figure 5.4: Distribution of the e-values of the hits in a BLAST search against a protein

database. The left graph shows only the good hints and the right graph shows only the

bad exonpart hints. Somewhat counterintuitive the distributions are fairly similar.

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 68

Choice of the set of grades

In this section we will define for each j ∈ {1, . . . , 6} the set of possible grades Gj and

the two distributions on the grades p+j and p−j . The purpose of the grades is to allow in

the model for hints of each type different levels of reliability and frequency. For example

the exonpart hints inferred from a combination of an EST and protein database search

are more reliable but less frequent than start hints inferred from just a protein search.

Suppose we combine at the same time extrinsic information coming from several sources.

For example, some hints are manual anchors, some are from protein database searches and

some are from EST database searches. Then we would like to be able to make use of our

prior knowledge about these different sources as in above example. As the set of grades

Gj we chose for each type j the subset of

{Manual,Protein,EST,Combined}.

of those sources actually used in the prediction. For example, if we use the hints from a

protein and an EST database search then Gj = {Protein,EST}, no matter if we found

hints. Here, each grade stands for a different source of the information. But the grades

could also be used to incorporate prior knowledge about for example protein hit e-values.

Then we would use instead of one grade Protein, say, 2 grades Protein1 and Protein2 for

protein hints with low or high e-value, respectively. The configuration files of AUGUSTUS

actually allow for any number of classes for each source, defined by ranges of scores in the

score column of the GFF format. This feature has not yet been made use of in lack of an

informative score for the hints.

The probabilities p+j (g) (g ∈ Gj) are estimated according to the relative frequency of grade

g among all good hints of type j in the training set. Correspondingly, the probabilities

p−j (g) (g ∈ Gj) are estimated according to the relative frequency of grade g among all bad

hints of type j in the training set.

The grade Manual is an exception. We introduced the grade Manual in order to be able

to let the user set absolutely trustworthy ’anchor hints’. I.e. hints that must be respected

under all circumstances. Methodically, this can be achieved by setting the probability

p−j (Manual) = 0 (j = 1, . . . , 6).

In words, in the model we never observe un-respected manual hints. We set

p+j (Manual) =
1

2
(j = 1, . . . , 6).

Remark: As long as p+j (Manual) > 0 this probability is arbitrary and has no influence on

the a-posteriori probabilities of parses: For each hint of type j of grade 0, all parses which

do not respect the hint have emission probability 0 as p−j (Manual) = 0. All other parses

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 69

have for this hint the same multiplier of p+j (Manual), which does not change the ratios of

emission probabilities among respecting parses and therefore not the ratios of a-posteriori

probabilities.

If Gj contains Manual, the probabilities p+j (g) of all other possible grades are proportional

to their relative frequency in the training sets but scaled such that
∑

g∈Gj
p+j (g) = 1.

Estimating r+j and r−j

The constants r+j and r−j were estimated in the human version using the training set e500.

The numbers below refer to the human version. For simplicity in the description below

assume that the sequences and their annotation in e500 were concatenated and we had

only one DNA sequence σ of length L = 4718341. As the sum of the p+j (g) over all possible

g is 1, the number r+j is the probability of observing a respected feature f of type j (with

the given length and reading frame if j = 5 or j = 6). I.e., if it was not for the grade,

in this model all respected features had equal probability. We use the following empirical

method to estimate r+j . We assume the number of actually observed good features is equal

to the expected number of good features given the true parse, which depends on r+j .

For the start type (j = 1) this means the following. Given the true parse ψ of the

sequences in e500 we compute the expected number of respected start hints in this model.

The number of bases where a start hint can be respected is the number of translation start

sites which equals the number of genes: 500. We denote this number with #(translation

initiation sites). At each of these bases the probability of observing any start hint is

according to (5.1)
∑

g∈G1

p+1 (g)r
+
1 = r+1

as the strand of a respected hint is given by ψ. Therefore the expected number of start

hints respected by the true parse is

#(translation initiation sites) · r+1 (5.2)

Assuming 5.2 equals the number of observed good start hints yields

r+1 :=
#(good start hints)

#(translation initiation sites)
(5.3)

Analogously, we compute r+2 , r
+
3 and r+4 :

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 70

r+2 :=
#(good stop hints)

#(translation termination sites)
(5.4)

r+3 :=
#(good ASS hints)

#(acceptor splice sites)
(5.5)

r+4 :=
#(good DSS hints)

#(donor splice sites)
(5.6)

(5.7)

Because of the fact that a good exonpart hint (j = 5) can have different lengths, the

computation here is a little different. Let E be the set of all exons in e500; for an exon

e ∈ E let `(e) be its length. The expected number of good exonpart hints given the true

parse ψ is

∑

i s.t. base i

is coding in ψ

∑

f=(g,d,l,r)∈F5

good at i

p+5 (g)r
+
5

= r+5
∑

e∈E

`(e)
∑

k=1

k (5.8)

= r+5
∑

e∈E
`(e)(`(e) + 1)/2

Step (5.8) is true because the strand and reading frame of a good exonpart feature at a

certain position are fixed by the true parse and a good exonpart hint at position k relative

to the exon start can have k possible lengths. The number

sql :=
∑

e∈E
`(e)(`(e) + 1)/2 = 362718220.

is the number of possible good exonpart hints. We estimate r+5 as

r+5 :=
#good exonpart hints

sql
. (5.9)

The computation for the exon hints (j = 6) again is similar to that of the first four types

because for a given position at most one good exon hint is possible. The length, reading

frame and strand are fixed by the true parse. And there is exactly one position per exon

in the training set at which a good exon hint is possible. Therefore

r+6 :=
#good exon hints

#exons
. (5.10)

Our method for estimating the r−j is similar. For each type j we assume that the actually

observed number of bad hints equals the expected number of bad hints given the true

parse ψ. This yields a formula for r−j in each case.

j = 1. The expected number of bad start hints can be estimated as follows. For each ATG

in the training sequence σ and each reverse complement of ATG which are not translation

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 71

starts we have the chance r−1 of observing a bad start hint. On a given strand in the

training set, the string ATG occurred on the average every 65.5 bases as a substring:

rate(ATG)=#(ATG)/L=1/65.5. Ignoring the relatively small number of cases where an

ATG indeed was a translation start and assuming that the reverse complement has the

same distribution, this yields an expected number of bad start hints of 2·rate(ATG)·L·r−1 .

Our estimate of r−1 therefore is

r−1 :=
#(bad start hints)

2 · rate(ATG) · L
. (5.11)

Similarly, we estimate the numbers for bad stop, ASS and DSS hints.

r−2 :=
#(bad stop hints)

2 · rate(stop codon) · L
, (5.12)

r−3 :=
#(bad ASS hints)

2 · rate(AG) · L
, (5.13)

r−4 :=
#(bad DSS hints)

2 · rate(GT) · L
. (5.14)

(5.15)

Here, rate(stop codon) = 1/23.4, rate(AG) = 1/13.7 and rate(GT) = 1/19.3 is L divided

by the number of occurrences of a stop codon (TGA, TAG, TAA) an AG or a GT in the

training set, respectively.

The estimation of r−5 again is somewhat different because of the length of exonpart hints.

For 1 ≤ i ≤ L, d ∈ {½,¾}, r ∈ {0, 1, 2} let

γ(i, d, r) := i−max{j ≤ i− 2 | stop codon in frame r starts at j on strand d in σ} ∪ {0}

be the length of the longest exonpart with frame r and strand d observable at position i.

And let γ̄ be the mean of γ(i, d, r) over all possible arguments. We computed γ̄ ≈ 96.7, i.e.

starting from a random position one can go on average about 97 bases until one reaches

a stop codon in a given reading frame. The expected number of bad exonpart hints given

parse ψ is

L
∑

i=1

∑

g∈G5

∑

d∈{½,¾}

∑

r∈{0,1,2}

∑

l≤γ(i,d,r)

{

p−5 (g)r
−
5 , if f = (g, d, l, r) bad at i;

0 , if f = (g, d, l, r) good at i.

= r−5

L
∑

i=1

∑

d∈{½,¾}

∑

r∈{0,1,2}

∑

l≤γ(i,d,r)

(

1−

{

0 , if f = (g, d, l, r) bad at i;

1 , if f = (g, d, l, r) good at i.

)

(5.16)

= r−5 (L · 2 · 3 · γ̄ − sql) (5.17)

In (5.16) we have used that the p−5 (g) sum up to 1 and in (5.17) we plugged in the definition

of γ̄ and have made use of the previously calculated number sql of possible good hints.

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 72

This yields the following estimation for r−5

r−5 :=
#(bad exonpart hints)

L · 2 · 3 · γ̄ − sql
(5.18)

Let the quadruple (i, l, d, r) be an exon candidate if an exon hint of length l, strand d and

reading frame r is observable at position i in σ. Then we denote with #(exon candidates)

the total number of exon candidates in the training set. We counted the number of exon

candidates on the forward strand with the computer:

E[#(exon candidates)] = L · 2.811

E[#(bad exon candidates)] = E[#(exon candidates)]−#(exons)

As #(exons) is negligible in comparison with E[#(exon candidates)] we estimate

r−6 :=
#(bad exon hints)

2.811 · L
(5.19)

Below we will also need the probability of not observing a special hint at a certain position,

i.e. of observing the hint t. This depends much on whether the parse supports a hint at

that position. Let a type j be given and let Fu be a random hint of type j at a position

where the parse does not support a hint of type j. The index u stands for unsupported.

In our applications

P (Fu =t) ≈ 1.

for all types. For example, the probability of not observing a start hint at a position

different from a translation start is very close to 1, even if a start hint is observable and

an ’ATG’ ends at that position. The same holds for all other types.

Let Fs be a random hint of type j at a position where type j is supported by the parse.

Although P (Fs =t) is implicitly defined with (5.1), we rather estimate it directly from

the data:

P (Fs =t) =































































#(trans. init. sites without hints)
#(trans. init. sites) , if Fs is of type start

#(trans. term. sites without hints)
#(trans. term. sites) , if Fs is of type stop

#(acceptor sites without hints)
#(acceptor sites) , if Fs is of type ASS

#(donor sites without hints)
#(donor sites)

, if Fs is of type DSS

#(coding bases without hints)
#(coding bases)

, if Fs is of type exonpart

#(exons without well-positioned hint)
#(exons) , if Fs is of type exon

(5.20)

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 73

In the last line the expression #(exons without well-positioned hint) denotes the number

of exons in the training set where no hint of type exon is at the position supported by the

exon. Table 5.1 shows the probabilities P (Fs =t).

5.3.4 Impact of the Hints on the Prediction

The Viterbi algorithm chooses the parse with highest a-posteriori probability. The question

naturally coming up is: How does a given hint influence the a-posteriori probabilities of

parses?

5.1 Definition (bonus)

For j ∈ {1, . . . , 6} and g ∈ Gj , g 6= Manual let

bonus(g, j) :=
p+j (g)r

+
j

p−j (g)r
−
j

The case g = Manual is excluded because then p−j (g) = 0 and the denominator vanishes.

For the choice Gj = {Protein,EST,Combined} the bonuses are listed in Table 5.1. All

bonuses are greater than 1. The bonus is the factor by which the emission probability of

a special observable hint of type j and grade g is increased when the parse respects the

hint as opposed to when the parse does not respect the hint.

Remark: We assumed that only one hint of each type can be observed at each position.

However, when the extrinsic information comes from different sources, it can happen that

there is more than one hint of a type at a certain position, for example a DSS hint from a

protein search and an EST search. In that case we keep only the hint of that grade (i.e.

of that source) of which the relationship from good hints to bad hints in the training set

was best.

5.2 Definition (malus)

Let σ ∈ Σ∗ be a DNA sequence, i a position in σ and j ∈ {1, . . . , 6} be a type. Let Fs be

the random hint of type j at position i in a parse that supports type j at position i in σ

and let Fu be the hint of type j at position i in a parse that does not support type j at

position i in σ. Then

malus(j) :=
P(Fs =t)

P(Fu =t)

5.3 Theorem

Let σ ∈ Σ′∗ be an input sequence to AUGUSTUS+ of length n that contains no special

hint of type j ∈ {1, . . . , 6} at position h (1 ≤ h ≤ n) and let σf ∈ Σ′∗ be the same sequence,

except that an observable hint f 6=t of type j and grade g is given at position h. Let ψ

and ψr be two parses of length n with positive a-posteriori probability given emission σ

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 74

type j r+j r−j bonus P(Fs =t)

Protein EST Combined

start 1 0.82 4.08 · 10−4 1828 - 2210 0.18

stop 2 0.94 1.84 · 10−4 3073 - 7170 0.06

ASS 3 0.32 2.16 · 10−4 1252 53 3388 0.68

DSS 4 0.32 4.46 · 10−4 786 33 2500 0.68

exonpart 5 5.6 · 10−6 8.22 · 10−7 17.7 2.5 21.1 0.996

exon 6 0.822 2.76 · 10−5 38724 3575 74470 0.178

Table 5.1: This table was constructed using the human training set e500 and all hints from

protein, EST and combined EST/protein database search. For all types the Combined

hints had a better relationship between good and bad hints than the Protein hints, which

in turn had a better relationship than the EST hints.

such that ψ does not respect f and ψr respects f . Let Φ = ϕ(X,Y) be the random parse

of AUGUSTUS+ and let Υ = σ(Y) be the random emission.

Then
P(Φ = ψr |Υ = σf)

P(Φ = ψ |Υ = σf)
=

bonus(g, j)

malus(j)

P(Φ = ψr |Υ = σ)

P(Φ = ψ |Υ = σ)
(5.21)

Proof: By the definition of conditional probabilities the claim is equivalent to

P(Φ = ψr,Υ = σf)

P(Φ = ψ,Υ = σf)
=

bonus(g, j)

malus(j)

P(Φ = ψr,Υ = σ)

P(Φ = ψ,Υ = σ)
(5.22)

The proof bases on the fact that in the products of transition and emission probabilities

of the joint probability of parse and emission only one factor which corresponds to the

hint is different. Let ψr = ((x1, d1), . . . , (xt, dt)) and let y1, . . . yt, y
f
1 , . . . y

f
t ∈ Σ′∗ be such

that |yi| = di, |y
f
i | = di (i = 1, . . . , t) and y1 . . . yt = σ, yf1 . . . y

f
t = σf . Let y0 = yf0 = ε.

Let k := min{i | d1 + · · ·+ di ≥ h} be the step in the parse ψr when position h is emitted.

Then the products

P(Φ = ψr,Υ = σf) =
t
∏

i=1

axi−1,xi
e′
xi−1,xi,y

f
1 ...y

f
i−1

(yfi) (5.23)

and

P(Φ = ψr,Υ = σ) =
t
∏

i=1

axi−1,xi
e′xi−1,xi,y1...yi−1

(yi) (5.24)

have identical factors except for e′
xk−1,xk,y

f
0 ...y

f
k−1

(yfk) and the corresponding factor in the

lower product. These emission probabilities themselves are products of a DNA emission

probability and hint emission probabilities. The products again differ only in one factor:

The probability of emitting the hint, f or t, of type j at position h. In (5.23) this factor

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 75

is p+j (g)r
+
j as ψr respects f and in (5.24) it is P (Fs =t), because a hint of type j is

supported at position h. Therefore

P(Φ = ψr,Υ = σf) =
p+j (g)r

+
j

P (Fs =t)
P(Φ = ψr,Υ = σ) (5.25)

Analogously,

P(Φ = ψ,Υ = σf) =
p−j (g)r

−
j

P (Fu =t)
P(Φ = ψ,Υ = σ) (5.26)

Combining equations (5.25) and (5.26) and plugging in the definition of bonus and malus

yields equation (5.22). ¤

The factor bonus(g, j) > 1 can be thought of a reward on the emission probability a parse

gets for respecting a given hint and the factor malus(j) < 1 can be thought of a penalty on

the emission probability a parse gets at a certain position for introducing an unsupported

start codon, stop codon, donor splice site, acceptor splice site or exon. Observe that this

bonus is not a bonus on the a-posteriori probability as introducing a hint usually reduces

the probability of the emission P(Υ = σ). The next theorem demonstrates how introducing

a hint f changes the a-posteriori probabilities. The a-posteriori probabilities of all parses

respecting f increase by a constant factor and the a-posteriori probabilities of all parses

not respecting f decrease by a different constant factor.

5.4 Theorem

Let f, g, j, σ, σf ,Φ and Υ be as in Theorem 5.3. Let

c := bonus(g, j)/malus(j) ≥ 1, R := P(Φ respects f |Υ = σ)

and let

m :=
1

1−R+ cR
, b := cm.

Then b ≥ 1 and m ≤ 1. For any parse ψr which respects f we have

P(Φ = ψr |Υ = σf) = b · P(Φ = ψr |Υ = σ), (5.27)

and for any parse ψ which does not respect f we have

P(Φ = ψ |Υ = σf) = m · P(Φ = ψ |Υ = σ). (5.28)

Proof: The statement that c ≥ 1 implies b ≥ 1 and m ≤ 1 is trivial given 0 ≤ R ≤ 1.

Rearrange (5.21) to get

P(Φ = ψr |Υ = σf) ·P(Φ = ψ |Υ = σ) = c ·P(Φ = ψr |Υ = σ) ·P(Φ = ψ |Υ = σf) (5.29)

Summing up this equation over all parses ψr which respect f and all parses ψ which do

not respect f yields

P(Φ respects f |Υ = σf) · P(Φ respects not f |Υ = σ)

= c · P(Φ respects f |Υ = σ) · P(Φ respects not f |Υ = σf) (5.30)

5.3. EXTENDED MODEL - AUGUSTUS TAKES HINTS 76

Defining S := P(Φ respects f |Υ = σf) and using P(Φ respects not f |Υ = σf) = 1 − S

and P(Φ respects not f |Υ = σ) = 1−R yields

S(1−R) = cR(1− S) (5.31)

Solving this for S yields

S =
cR

1−R+ cR
(5.32)

which we need below. Fixing a parse ψr and summing up (5.29) over all parses ψ not

respecting f yields

P(Φ = ψr |Υ = σf) · (1−R) = c · P(Φ respects f |Υ = σ) · (1− S) (5.33)

which proves (5.27) using (5.31) and (5.32). Similarly, (5.28) can be shown by summing

up (5.29) over all parses ψr respecting f .

Chapter 6

Implementation

6.1 The Programs

The program AUGUSTUS has been implemented using the programming language C++

[Str91]. It has been compiled using the compiler gcc (version 3.2) on a PC under Linux and

FreeBSD. The architecture of the model and the parameters are read in at run time from

configuration files and data files. The configuration files can be manually edited to change

the number of states and the possible transitions or meta-parameters like window sizes or

the order of a Markov chain. The data files with the parameters of the state models, e.g.

the Markov chain transition probabilities, are generated by a separate training program

that takes an annotated sequence set in Genbank format and outputs these data files. The

size of the source code of the two programs amounts to approximately 16000 lines of code.

One obstacle in implementing recursions (2.11) and (2.15) is that the probabilities stored

in the Viterbi and forward matrix get too small for using standard C++ floating point

types. Instead in AUGUSTUS a real number q is stored in a purpose-build data structure

in the form q = a · 4n, where a is of type double (8 bytes on my platform), and n is of

type long int (4 bytes on my platform). This data structure and the standard arithmetic

operations on it have been implemented by Emmanouil Stafilarakis.

6.2 Space and Running Time

The Viterbi algorithm and the forward algorithm require almost the same computations.

Therefore we always compute the two dynamic programming matrices, the Viterbi matrix

and the forward matrix, at the same time. Let m (=47) be the number of states and t be

the input sequence length. Then the space required for storing the Viterbi and forward

matrix, which have dimensions m and t, is linear in the sequence length:

space = Θ(mt)

77

6.2. SPACE AND RUNNING TIME 78

Each entry of the dynamic programming matrices takes 8+4 = 12 bytes computer memory

on my PC. This totals to theoretical 2 · 47 · 12 · 1000bytes ≈ 1.08 mega bytes per kilo base

sequence length for the storage of both matrices. Indeed, in practice the amount of com-

puter memory needed (determined by regression on experimental data) is approximately

20 mega bytes + 1.08 mega bytes per kilo base sequence length. Where the constant 20

mega bytes are needed to store the model parameters and the program itself. This means

for example that an input sequence of length 300000 needs about 344 mega bytes memory.

AUGUSTUS has an option to cut the input sequence in pieces when it is too long for the

amount of computer memory available. The parting points are then assumed to be in the

intergenic region and the predictions for the pieces are composed afterwards. For example

the 2.9 Mb of the Adh region were cut input pieces of length 400 Kb because AUGUSTUS

was run on a PC with 512 MB RAM.

The running time of the Viterbi algorithm (and the forward algorithm) is dominated by the

time needed to construct the dynamic programming matrix. For each position 1 ≤ i ≤ t in

the input sequence and each state q ∈ Q a list of all combinations of possible predecessor

states q′ and their ending positions l′ needs to be searched (see the recursion (2.11)) and

the probability of the emission needs to be calculated. Let us call this list the predecessor

list. The probability of each emission can be calculated in constant time, when some results

are stored after their calculation: The only submodels which have no maximal length are

Markov chains. The probability of a piece a of sequence in a Markov chain model can be

calculated in constant time when the probability of a piece b with endpoints differing by at

most 1 from those of a is known. We process the list of predecessor positions l′ from right

to left and save the Markov chain probabilities intermediately. Therefore the running time

required for position i and state q is proportional to the size of the predecessor list. For

all states, except the Ijshort and the exon states, the size of this list is at most m. The are

at most m such states. For the intron states Ijshort the size of this list is at most m. For

an exon state the size of this list is at most proportional to ORFlength, where ORFlength

is the distance of i to the next stop codon left of position i with respect to the reading

frame given by the exon state. This is so because AUGUSTUS assumes that the exons

contain no in-frame stop codons and therefore it may truncate the predecessor list beyond

the position of the first stop codon. In the worst case there may be no in-frame stop

codons and every of the i − 1 positions before i may be the end position of the previous

state. This means a worst-case running time which is quadratic in t. Fortunately, on the

average ORFlength is short. Under the assumption that the bases of the input sequence

are independent and uniformly distributed on {A,C,G, T} the expectation of ORFlength

would be E[ORFlength] ≈ 64 bases. Indeed, in the human test set h178 the mean of

ORFlength was about 89 (the longest ORFlength was 2263), which is significantly smaller

6.3. OUTPUT OF AUGUSTUS 79

than the constant d for the introns. The expected running time is

Expected Running Time = O (mt(m+ d+ E[ORFlength]))

which is also linear in t under reasonable assumptions on the mean length of open reading

frames. The actual running time of AUGUSTUS on the sequences of h178 on a single-

processor PC with 2.4 GHz is shown in Figure 6.1.

5000 10000 15000 20000 25000
sequence length

1

2

3

4

5

running time@sD

Figure 6.1: Running time of AUGUSTUS on a set of 178 human sequences. The regression

line has slope 1.74 s / 10000 bp.

6.3 Output of AUGUSTUS

AUGUSTUS takes the input DNA sequence in (multiple) FastA format, which is a simple
standard format for biological sequences. It contains for each sequence a ’>’ followed by
the sequence name and in the subsequent lines the sequence itself. AUGUSTUS outputs
its result in the ’General Feature Format’ (GFF) proposed by Richard Durbin and David
Haussler. An example output is shown below.

This output was generated with AUGUSTUS (version 1.0).

No extrinsic information on sequences given.

#

----- prediction on sequence number 1 (length = 5200, name = examplesequence) -----

#

Predicted genes for sequence number 1 on both strands

examplesequence AUGUSTUS stop_codon 219 221 . - 0 "g1"

examplesequence AUGUSTUS single 219 1850 . - 0 "g1"

examplesequence AUGUSTUS start_codon 1848 1850 . - 0 "g1"

protein sequence = [MRPSCCEGYEGSVENCKPVCRQQCPQHGFCSSPNTCSCNAGYGGIDCHPVCPTVCGK

NEFCDRPGVCSCQNGYKRTSPSDNCLPVCEKECGHHSFCSEPGKCECEPGYEKVGNGTVFPDGYKNNSNGNCSPICP

KDCGQNSRCVRPGVCECENGYAGDDGGTNCRPVCSTCPENGLCLSPGVCVCKPGYVMRNDLCQPHCEKCSDNAHCVA

PNQCECFPGYESSGADKKCVPKCSKGCTNGFCFAPETCVCSIGYQMGPNQVCEPKCSLNCVHGKCTSPETCTCDPGY

RFKDNSHHECDPICDSGCSNGHCVAPNFCICHDGYQLNSTNPVTSMCQPICKGCQFGDCVAPNVCECNVGYENINGL

CELQTTTDSYEYSTTTVELQSSTVDPQLQTSTSEVPHSNCTAGCMCWIEYDGMGTFNTAKCAKICVDPQDKPCLNLD

NCQCDLSSGQLVCQEDSDMDYSGENSRYVCHILPEQGARSEAEVRIPDRTGSSNKWMIIVGSCAGMIIGVAATIIGI

KYYRRSTSRRNFEAEEAIVECDFE]

examplesequence AUGUSTUS start_codon 2869 2871 . + 0 "g2"

examplesequence AUGUSTUS initial 2869 3056 . + 0 "g2"

6.3. OUTPUT OF AUGUSTUS 80

examplesequence AUGUSTUS intron 3057 3200 . + . "g2"

examplesequence AUGUSTUS internal 3201 3447 . + 1 "g2"

examplesequence AUGUSTUS intron 3448 3511 . + . "g2"

examplesequence AUGUSTUS internal 3512 3616 . + 0 "g2"

examplesequence AUGUSTUS intron 3617 3703 . + . "g2"

examplesequence AUGUSTUS internal 3704 4250 . + 0 "g2"

examplesequence AUGUSTUS intron 4251 4316 . + . "g2"

examplesequence AUGUSTUS internal 4317 4583 . + 2 "g2"

examplesequence AUGUSTUS intron 4584 4724 . + . "g2"

examplesequence AUGUSTUS terminal 4725 4888 . + 2 "g2"

examplesequence AUGUSTUS stop_codon 4886 4888 . + 0 "g2"

protein sequence = [MVLITLTLVSLVVGLLYAVLVWNYDYWRKRGVPGPKPKLLCGNYPNMFTMKRHAIYD

LDDIYRQYKNKYDAVGIFGSRSPQLLVINPALARRVFVSNFKNFHDNEIAKNIDEKTDFIFANNPFSLTGEKWKTRR

ADVTPGLTMGRIKTVYPVTNKVCQKLTEWVEKQLRLGSKDGIDAKHMSLCFTTEMVTDCVLGLGAESFSDKPTPIMS

KINDLFNQPWTFVLFFILTSSFPSLSHLIKLRFVPVDVERFFVDLMGSAVETRRAQLAAGKQFERSDFLDYILQLGE

KRNLDNRQLLAYSMTFLLDGFETTATVLAHILLNLGRNKEAQNLLREEIRSHLQDGTIAFEKLSDLPYLDACVQETI

RLFPPGFMSNKLCTESIEIPNKEGPNFVVEKGTTVVVPHYCFMLDEEFFPNPQSFQPERFLEPDAAKTFRERGVFMG

FGDGPRVCIGMRFATVQIKAAIVELISKFNVKINDKTRKDNDYEPGQIITGLRGGIWLDLEKL]

examplesequence

0 520 1040 1560 2080 2600 3120 3640 4160 4680 5200

0 520 1040 1560 2080 2600 3120 3640 4160 4680 5200

AUGUSTUS

g2

2869
4888

2869
3056

3201
3447

3512
3616

3704
4250

4317
4583

4725
4888

AUGUSTUS

g1

21
9

18
50

21
9

18
50

This plot has been obtained using gff2ps. The most recent version of gff2ps is freely available at "http://www1.imim.es/software/gfftools/GFF2PS.html". Copyright 1999 by Josep F. Abril & Roderic Guigo

Figure 6.2: Visualization of the predicted genes in the example output.

This output was generated using AUGUSTUS on a part of the Drosophila Adh region

with the command line parameters ’−−strand=both −−introns=on’. The first one tells

AUGUSTUS to predict genes on both strands, the latter tells it to additionally output

the intron positions. The lines starting with a ’#’ character are comments in the GFF.

The other lines contain the information about the gene prediction and can be used as

input to a visualization tool like gff2ps [AG00]. Each non-comment line corresponds to a

predicted exon, intron, start codon or stop codon. In the first column the sequence name

(examplesequence) is given, the second column specifies the source of this annotation

(AUGUSTUS) the third column contains the ’feature’ name: ’single’, ’initial’, ’internal’

and ’terminal’ stand for a single, initial, internal or terminal exon. ’start codon’ and

’stop codon’ stand for the first and the last codon of the gene. ’intron’ stands for an

intron. The 4th and the 5th column specify the beginning and end position of the feature.

6.4. WEB SERVER 81

The 7th column has a ’+’ for the forward stand and a ’-’ for the reverse strand. The 8th

column specifies for exons the reading frame position. It is the number of bases of the

exon (0, 1 or 2) upstream of the most upstream codon boundary of the exon. The last

column contains a name for the gene, which is a ’g’ plus a consecutive number.

Figure 6.2 shows a graphical representation of the predicted genes made with gff2ps. The

single gene on the reverse strand is shown in the lower row and the multiple exon gene on

the forward strand is shown in the top row.

6.4 Web Server

AUGUSTUS has been made available publicly in the form of a web interface. This web

interface has been set up by Rasmus Steinkamp on the Göttingen Bioinformatics Compute

Server (GOBICS). A screenshot of the web page http://augustus.gobics.de/submission

showing the web interface is shown in Figure 6.3.

Figure 6.3: Screenshot of the AUGUSTUS web interface.

The user may either paste her input DNA sequence into a text field or upload the file

http://augustus.gobics.de/submission

6.4. WEB SERVER 82

directly from a directory on her computer. She may choose between the options mentioned

in section 3.5 and receives her results both as a text file in GFF and as a postscript picture

similar to that in 6.2.

Furthermore, the executable program AUGUSTUS as well as all training sequences are

freely available from http://augustus.gobics.de.

http://augustus.gobics.de

Chapter 7

Results of AUGUSTUS

In this chapter we report estimates about the reliability of AUGUSTUS’ predictions. These

estimates were, as it is customary, retrieved by comparing the predictions to the annotation

for a set of sequences where the annotation is relatively certain to be true. Such a set is

called a test set. Out test sets are described in section 7.1. The parameters of AUGUSTUS

were trained using training sets, which contain other genes than the test sets. They are

described in section 7.2. In section 7.3 we describe the accuracy results of AUGUSTUS,

AUGUSTUS+ and variants of the model for different test sets and when using extrinsic

information from different sources.

7.1 Test Sets

We tested AUGUSTUS on four data sets which we call fly100, adh222, h178 and sag178.

fly100 is a set of 100 sequences of the fruit fly Drosophila melanogaster which has served

as a model organism for genetic studies for almost a century [SGH+98]. The annotation

of each sequence contains one gene which is on the forward strand. 18 of the 100 genes

were single exon genes. The mean sequence length is 16.1 kilo bases (shortest 2, longest

104 kilo bases). The sequences were retrieved from FlyBase and have been filtered for

annotation errors and redundancies as described in section 7.2.

adh222 is a single sequence of Drosophila melanogaster and 2.9Mb long. It is a well-

characterized sequence contig from the Adh region and has been used in the Genome

Annotation Assessment Project (GASP) [RGH+00]. They constructed two sets of annota-

tions. The first, smaller set, called std1, was chosen so that the genes in it are likely to be

annotated correctly and the second, larger set, called std3, was chosen to be as complete

as possible ‘while maintaining some confidence’ about the correctness. In the corrected

version std1 contains 38 genes with a total of 111 exons and std3 contains 222 genes with

a total of 909 exons. The genes lie on both strands. Both the authors of GENIE and

of GENEID [PEG00] have used these two annotation sets for testing their programs. It

83

7.2. TRAINING SETS 84

should be noted that std1 was chosen to contain only splice sites with a high score in a

neural network model used in GENIE and provided by M. Reese.

h178 is a set of 178 human genomic sequences with one complete gene each. Each con-

tains one gene and a little flanking DNA. The sequences are from EMBL, were compiled by

[GAA+00] and have also been used by the author of GENSCAN for evaluation [YLB01].

The mean sequence length is 7169 bases (shortest 622, longest 86640 bases). This set is

known to contain three annotated genes which are very likely, if not known, to be wrong.

But we kept them for reasons of comparability.

sag178 is a set of 43 sequences with 178 human genes on both strands. These sequences

were also taken from [GAA+00] and are semi-artificial in the following sense. Guigó et al

took the 178 sequences from h178 and generated long intergenic regions randomly using a

Markov model of order 5. They write ‘Some of the resulting parameters, such as average

G+C content of 40%, a gene every 43Kb, and a coding density of 2.3% are in agreement

with that for the overall human genome’. 40 of the 178 genes were single exon genes.

The mean sequence length is 177 kilo bases (shortest 70, longest 282 kilo bases) and each

sequence contained on the average 4.1 genes.

7.2 Training Sets

The training set for the human version of the program was retrieved in October 2002 from

Genbank. Sequences with inconsistent notation were deleted as well as sequences that

were overlapping with a sequence in one of the human test sets. This was done using

blastn [AGM+90] with an e-value cutoff of 10−100 (blastall -p blastn ... -S 1 -G 9 -q -9

-e 1e-100). The rest was cleaned for redundancies and 1284 sequences with one gene each

remained. Additionally, we use for the human parameter set the splice sites from 11739

human introns that were each not contained in the test sets (data originally retrieved from

http://genomic.sanger.ac.uk/spldb/HumanCanonicalSites.ESTsupp). For the Drosophila

training and test set we took single gene sequences from FlyBase in December 2001. These

were cleaned for genes with known alternative splicing, incomplete annotation, in-frame

stop codons, non-canonical splice sites and for redundancies within the data set. The

resulting 420 sequences were randomly divided into a training set of 320 and a test set of

100 sequences, again with no BLAST match with e-value smaller than 10−100 between the

data sets. For the runs on the adh222 test set, we took these 420 Drosophila sequences and

removed those 20 sequences that had a blastn hit with e-value less than 10−10 when run on

the Adh sequence. Except for the different training sets, the same parameters were used

for training and testing the two test sets for each species. For comparison: The training

set of GENSCAN consists of 380 single gene sequences plus additional unpublished 1619

7.3. ACCURACY 85

cDNA sequences. Comparing the genomic sequences of h178 and the 380 training genes of

GENSCAN shows that 91 of the 178 test genes have a blastn hit in GENSCANs training

set with e-value below 1e-100, most of them because the same gene is annotated. The

data sets used here can be downloaded from http://augustus.gobics.de/datasets/.

For training the additional parameters of AUGUSTUS+ (r+j , r
−
j , p

+
j (g), p

−
j (g)) we also

used a training set. For Drosophila this training set was identical to the training set of

AUGUSTUS. For the human version this was a randomly chosen subset, e500 , of 500

sequences of the training set of the human version of AUGUSTUS. We chose to restrict

ourselves to this subset because the BLAST searches in the protein and EST databases

were time consuming.

7.3 Accuracy

We measured the gene prediction accuracy with the customary measures, sensitivity and

specificity. For a predicted feature (coding base, exon, gene) the sensitivity is defined as

the number of correctly predicted features (= true positives) divided by the number of

annotated features (= actual positives)

sensitivity =
true positives

actual positives
.

The specificity is the number of correctly predicted features divided by the number of

predicted features (= predicted positives).

specificity =
true positives

predicted positives
.

A predicted exon is considered correct if both splice sites are at the annotated position

of an exon. A predicted gene is considered correct if all exons are correctly predicted

and no additional exons are predicted. Predicted partial genes were counted as predicted

genes. For each data set these measures were computed globally (once for all sequences

together) and in sag178 and adh222 the forward and reverse strands were treated as

different sequences.

7.3.1 Comparison to Other Programs

For comparison of the ab-initio model we used GENSCAN (version 1.0), GENEID and

GENIE. We took GENSCAN as it is the most commonly used gene prediction program

and as it is considered one of the best programs for humans. Also our HMM is simi-

lar to that of GENSCAN. GENSCAN was run using its human parameter set for both

human and Drosophila as recommended. We used GENEID (version 1.1) as there is a

special Drosophila parameter set available for it and as it uses a different approach not

modeling the lengths. GENEID first finds splice site candidates, then exon candidates

http://augustus.gobics.de/datasets/

7.3. ACCURACY 86

fly100 AUGUSTUS+

Protein,

EST and

Combined

Protein EST Combined

A
U
G
U
ST
U
S

G
EN

SC
A
N

G
EN

EI
D

G
EN

O
M
ES
C
A
N

base
sn 97% 97% 95% 99.6% 98% 98% 99.7% 97%

sp 59% 33% 53% 59% 59% 59% 59% 55%

exon
sn 80% 68% 65% 94% 82% 88% 94% 81%

sp 49% 22% 39% 54% 49% 52% 54% 46%

gene
sn 53% 37% 31% 77% 56% 72% 78% 61%

sp 27% 10% 14% 37% 29% 35% 37% 29%

Table 7.1: Accuracy results on Drosophila data set fly100. Only genes on the forward

strand were considered. A part of the ’false’ positives accounting for the low specificity of

all methods probably can be attributed to non-annotated genes in the sequences.

using the splice site candidates and then genes using the exon candidates. GENEID was

run using the parameter sets human3iso.param and dros.param, respectively. In one case

we also compare to GENIE, because this program compared favorably to the other ab

initio programs in the GASP experiment. GENSCAN and GENEID were downloaded

from the Internet. For comparison of AUGUSTUS+ to a program which also uses ex-

trinsic information we used GENOMESCAN, which was reported to be superior to the

spliced-alignment-programs GENEWISE and PROCRUSTES on dataset h178 if only pro-

tein matches with a BLAST p-value above 10−120 were used [YLB01]. The Genbank gene

annotation (build 25 to build 33) included predictions of GENOMESCAN. GENOMES-

CAN is available through a web interface which we used for our own test runs of it in

December 2003.

AUGUSTUS

Tables 7.1 to 7.4 show a summary of the results of the programs on the test sets. On

the Drosophila test sets (Tables 7.1 and 7.2) AUGUSTUS outperforms the three other

ab-initio programs on each of the three levels.

On data set fly100 it predicts 53% of the genes correctly, GENSCAN and GENEID only

37% and 31%, respectively. More than 3 out of 4 exons predicted by GENSCAN in fly100

are not annotated. Even when taking into account that those sequences may contain non-

annotated genes, GENSCAN is likely to predict many more false exons than GENEID and

AUGUSTUS. GENSCAN was not run on the Adh region as it required too much computer

memory. The test set adh222 is a more realistic test set for gene prediction programs as it

is a long relatively well-annotated sequence with a large number of genes on both strands.

Here, AUGUSTUS has an exceptionally good gene level sensitivity of 68%. However, as

7.3. ACCURACY 87

adh222 AUGUSTUS GENEID GENIE

base
sn∗ 98% 96% 96%

sp∗ 93% 92% 92%

exon
sn∗ 85% 71% 70%

sp∗ 65% 62% 57%

gene
sn∗ 68% 47% 40%

sp∗ 38% 33% 29%

Table 7.2: Accuracy results on Drosophila data set adh222. The asterisk (∗) denotes

that sensitivity and specificity were measured using two different sets of annotations. The

sensitivity refers to std1 and the specificity refers to std3. The values for GENIE are taken

from [RGH+00]

h178 AUGUSTUS+

Protein,

EST and

Combined

Protein EST Combined

A
U
G
U
ST
U
S

G
EN

SC
A
N

G
EN

EI
D

G
EN

O
M
ES
C
A
N

base
sn 93% 97% 89% 98% 94% 98% 99% 98%

sp 90% 86% 91% 92% 89% 93% 94% 92%

exon
sn 80% 83% 66% 88% 81% 92% 93% 89%

sp 81% 75% 75% 86% 76% 89% 89% 86%

gene
sn 48% 40% 14% 62% 40% 71% 73% 63%

sp 47% 36% 13% 59% 39% 68% 70% 60%

Table 7.3: Accuracy results on human data set h178.

the sample for the sensitivity consisted only of 38 genes, we conducted McNemar’s test, to

check whether AUGUSTUS and the second best program, GENEID, actually could have

the same gene level sensitivity. GENEID predicted 1 gene correctly where AUGUSTUS

failed, and AUGUSTUS predicted 9 genes correctly where GENEID failed. This yields a

p-value of 0.0215. Thus, at a confidence level of 5% the hypothesis can be rejected that

AUGUSTUS and GENEID have the same gene level sensitivity.

On the human data set h178 with short single gene sequences (Table 7.3) AUGUSTUS and

GENSCAN are similarly accurate with respect to the mean of sensitivity and specificity

on the base and exon level. GENSCAN is more sensitive, AUGUSTUS more specific.

GENEID is worse here. AUGUSTUS predicts more genes (85) correctly than GENSCAN

(71) and GENEID (25).

On the long sequences in sag178 containing the same genes (Table 7.4) AUGUSTUS pre-

dicts still 41% of the annotated genes correctly. This is remarkable as it has been reported

7.3. ACCURACY 88

sag178 AUGUSTUS+

Protein,

EST and

Combined

Protein EST Combined

A
U
G
U
ST
U
S

G
EN

SC
A
N

G
EN

EI
D

base
sn 93% 94% 89% 97% 93% 95% 98%

sp 81% 64% 78% 86% 83% 86% 90%

exon
sn 79% 68% 67% 85% 80% 84% 87%

sp 71% 45% 60% 80% 72% 79% 84%

gene
sn 41% 18% 17% 55% 44% 53% 62%

sp 36% 14% 17% 51% 39% 49% 57%

Table 7.4: Accuracy results on human data set sag178. The gene level accuracy measures

of GENSCAN on these long genomic sequences are similar to those reported by Korf et

al. for long mouse sequences with mean length 112 Kb (sensitivity: 15%-17%, specificity:

11%-16%) [KFDB01].

that ‘Computational gene finders produce acceptable predictions of the exonic structure

of the genes when analyzing single gene sequences with very little flanking intergenic

sequence, but are unable to correctly infer the exonic structure of multi gene genomic

sequences.’ [GAA+00]. GENSCAN and GENEID predict only 18% and 17% of the genes

correctly. GENSCAN here often ‘adds’ false short exons to an annotated gene and is

therefore much less specific than GENEID and AUGUSTUS.

AUGUSTUS+

AUGUSTUS+ has been tested on the test sets fly100, h178 and sag178. On each test set

we tested four different settings for the extrinsic information.

• Protein: AGRIPPA was used to generate the hints using only the nr protein database.

• EST: AGRIPPA was used to generate the hints using only the EST database.

• Combined: AGRIPPA was used to generate the hints making a combined EST and

protein database search.

• Protein, EST and Combined: All above hints were used but redundant hints were

deleted (see remark in section 5.3.4).

On test sets fly100 and h178 we also ran GENOMESCAN. GENOMESCAN must be

given at least one amino acid sequence which is similar to the DNA input sequence. We

gave GENOMESCAN all complete amino acid sequences of proteins that were used by

AGRIPPA for the construction of hints of type Protein and Combined. Therefore the

7.3. ACCURACY 89

protein information available to GENOMESCAN was equal to or a superset of the protein

information available to AUGUSTUS+ in the three settings which use proteins (all but

the EST setting). For h178 there were on average 2.2 informative amino acid sequences

per DNA input sequence given to GENOMESCAN. For one of the 178 sequences there was

no available protein information. In that case we used GENSCAN instead of GENOMES-

CAN. For fly100 there were on average 4.6 informative amino acid sequences per DNA

input sequence given to GENOMESCAN. Here, all sequences had at least one similar

amino acid sequence. GENOMESCAN could not be run on the test set sag178 because a

part of those sequences apparently exceed the length limit of the GENOMESCAN server.

Table 7.1 shows that the use of ESTs alone can increase the accuracy of AUGUSTUS for

Drosophila sequences. The sensitivity on the base, exon and gene level increase by 1, 2

and 3 percent points, respectively. And the specificity on the base and exon level stays

the same and increases on the gene level by 2 percent points. This is in contrast to the

results of A. Krogh with HMMGENE on Drosophila sequences who writes ‘The specificity

drops more than the sensitivity increases when ESTs are used‘ [Kro00]. Restricting the

information from the ESTs to that information, which is additionally supported by proteins

as done in the Combined setting yields more accurate results than using unfiltered EST

information. Using only proteins as source of extrinsic information is for Drosophila better

than combining EST with protein information, though. The best results for Drosophila

were achieved in the fourth setting when all information was used together. Then 99.7%

of the coding bases were found and 94% of the exons and 78% of the genes were predicted

correctly. The performance of GENOMESCAN is worse than that of AUGUSTUS+ in

any of the settings except the EST setting, where it is more sensitive on the gene level but

less specific on the base and exon level.

On the human test set h178 the ESTs were not helpful unless when combined with proteins

(Table 7.3). The accuracy results for the Combined setting were even much better than

those for the Protein setting. Again, it was best to use all available hints together. In

the setting Protein, EST and Combined 93% of the exons and 73% of the genes were

correctly predicted. The accuracy results of GENOMESCAN are very similar to those of

AUGUSTUS+ in the Protein setting.

On the test set sag178 the EST hints are again helpful for increasing the accuracy of

AUGUSTUS. This is astonishing because one might suspect that for sag178 the same

hints about the genes should be found as in h178. After all they contain the same ge-

nomic sequences, sag178 just contains additional random DNA. However, it turns out

that AGRIPPA finds more than 3 times as many hints for test set h178 than for test set

sag178. The Protein setting here is somewhat better than the Combined setting and the

best results are again achieved when using all available hints in the setting Protein, EST

and Combined.

7.3. ACCURACY 90

h178 using moderately similar using strongly similar

proteins, e-value ≥ 10−30 proteins, e-value < 10−30

AUGUSTUS+ GENOMESCAN AUGUSTUS+ GENOMESCAN

base
sn 95% 95% 98% 97%

sp 90% 91% 92% 92%

exon
sn 85% 85% 88% 86%

sp 84% 83% 85% 84%

gene
sn 54% 51% 64% 61%

sp 50% 49% 60% 58%

Table 7.5: Accuracy results on subsets of the human data set h178 when either moderately

similar amino acid sequences are used (148 sequences) or strongly similar amino acid

sequences are used (131 sequences).

When using extrinsic information the accuracy strongly depends on the quality and quan-

tity of the available extrinsic information. As an extreme case consider the case when

the amino acid sequence of a gene in the input DNA sequence is known. In such a case

a program based on spliced alignment is likely to yield better results than an extrinsic

method based on the BLAST search tool. As reported in [GAA+00] and [YLB01] the

accuracy of gene finders using protein similarity information increases with the similarity

measured by the BLAST e-value. For that reason we examined the accuracy of AUGUS-

TUS+ in the Protein sequences for two different subsets of h178. One subset consisted

only of sequences which had a protein match with a BLAST e-value between 10−30 and

10. There were 148 such sequences. On these sequences AUGUSTUS+ and GENOMES-

CAN were tested using only the moderately similar proteins with a BLAST value in that

range. A second subset consisted only of those 131 sequences which had a protein match

with a BLAST e-value below 10−30. For this set the two programs were given only the

strongly similar proteins with a BLAST e-value below 10−30. The results are shown in

Table 7.5. AUGUSTUS+ and GENOMESCAN perform very similar on both of the sets

when compared to each other. The gene sensitivity of AUGUSTUS+ is somewhat higher

than that of GENOMESCAN in both cases. Indeed, both programs perform better when

using strongly similar proteins but even the results for only moderately similar proteins

are significantly better than the ab-initio results.

7.3.2 Comparison to Variants of AUGUSTUS

In order to find out to which extent the new methods or submodels contribute to the

accuracy of AUGUSTUS, we compared AUGUSTUS to versions of AUGUSTUS where

one or more feature (method or submodel) had been changed. We did this separately for

7.3. ACCURACY 91

feature human fly

intron length model 0.3 3.4

initial pattern 1.6 1.0

similarity-based weighting 1.0 1.0

IMM 1.8 0.0

internal 3’ content model 0.8 n.a.

translation initiation motif 0.1 1.9

all MM of order 4 instead of 5 2.2 0.2

Table 7.6: The relative mean improvement of sensitivity and specificity in percent on

exon and gene level caused by different features of the program. The largest increase in

accuracy through a single feature is attributed to the new intron length model, but only

for Drosophila.

human and Drosophila but summarized the results for the two datasets for each species.

In particular, we use an – admittedly – coarse measure, the mean increase in sensitivity

and specificity on the exon and gene level when the feature is used as compared to when

the feature is left out or changed. For example, let ∆sniexon be the difference between the

sensitivity on the exon level on dataset i ∈ {1, 2} of AUGUSTUS and AUGUSTUS with

some feature changed. We weighted the two datasets for each species with the number of

annotated genes n1 and n2 in the two datasets used to determine the accuracy measure,

here the sensitivity. Then ∆snexon = (n1 ·∆sn1exon + n2 ·∆sn2exon)/(n1 + n2) denotes the

mean increase in exon sensitivity. We use

r := (∆snexon +∆spexon +∆sngene +∆spgene)/4

as a measure to give the reader an idea of the relevance of the feature of the model.

Table 7.6 shows for a selected number of features the relative improvement r. The first

line refers to a version of AUGUSTUS, where the intron length was modeled using a

shifted geometric distribution with minimum length 48 and the parameter estimated with

the maximum likelihood method. In particular the relative improvement for Drosophila

sequences achieved by our intron length model was 3.4%. The second line refers to the

version of AUGUSTUS, where only the initial pattern model was left out, i.e. the start

codon model or the ASS model is directly followed by a Markov content model. The third

line refers to the version of AUGUSTUS where the donor splice site model simply uses

the empirical distribution of the patterns (with pseudo counts). The fourth line refers to

the version where all IMMs were substituted by Markov models of the same order. This

mostly effects the internal 3’ content model in the human version. The fifth line refers to

the version of AUGUSTUS where the internal 3’ content model was left out. The sixth

7.3. ACCURACY 92

line refers to a version of AUGUSTUS with a missing translation initiation motif. The last

line of Table 7.6 refers to the version of AUGUSTUS where the Markov models for exons,

introns and intergenic region are 5th order Markov models. The largest improvement

through a single new feature is obtained for Drosophila with the introduction of the new

intron length model.

We examined whether the improvement in exon sensitivity for Drosophila by introducing

the new intron length model might by explained by simple chance. For each of the exons

of the 138 genes used to calculate the two exon sensitivities for Drosophila we observe two

dependent Bernoulli-random variables determining whether it was correctly predicted in

the two runs, with or without the feature. McNemar’s test for dependent samples yielded

a p-value of 0.000034, so that an improvement simply by chance can be ruled out in this

case.

The reason that the new intron model does not improve much the predictions for humans

can be explained by the fact that short human introns have a much less characteristic

length than short Drosophila introns.

It should be noted that we have tried a large number of other ideas for the improvement

of the model, which turned out to be in vain and are not mentioned in this thesis.

7.3.3 Discussion

The fact that content models of order 4 yield better accuracy results than those of order 5

might be astonishing, as there are enough training data for training models of order 5, and

models of higher order model the real distribution more accurately than models of lower

order. We conjecture the following explanation for it. In theory, a perfect program should –

like the transcription and translation apparatus of the cell – consider the biological signals

for prediction, instead of statistical features of the coding and non-coding sequences. For

imperfect, current state-of-the-art programs, taking these statistical features into account

by using content models helps improving accuracy. However, not rarely the wrong content

model yields a higher probability for a stretch of sequence than the correct one, e.g. an

untypical short exon gets a larger probability in the non-coding model or a stretch of

non-coding sequence gets a higher probability in an exon model. Our observation is that

the higher the order of the Markov chain of the content models are, the larger are the

differences in the probabilities that a stretch of sequence gets in the coding model versus

the non-coding model. A higher order Markov chain may more often correctly classify

sequences as coding or non-coding but if it misclassifies a sequence it tends to be wider

off the correct classification. This means that when using a higher order Markov chain the

’decisions’ are made to a greater extent by the content models than by the signal models

and errors of the content models have a lower chance of being corrected by the signal

7.3. ACCURACY 93

models.

AUGUSTUS is more accurate in many test settings than well known gene finding programs.

Especially, on Drosophila sequences the advantage of AUGUSTUS over the other programs

is significant. As a general tendency, AUGUSTUS tends to have a relatively large gene

level accuracy. AUGUSTUS performs relatively well on the task of assembling exons

to genes because programs with a similar exon level accuracy often have a lower gene

level accuracy. This means those programs more often combine the exons to a wrong

gene structure for example by splitting or joining genes. The task of assembling exon

candidates to a gene structure may become more important in future. With the growing

number of sequenced species also the possibilities of finding approximate possible exons

by cross-species alignments of homologue genomic sequences grows. This leaves the task

of assembling possible exons to genes. We believe that with our probabilistic model for

integrating extrinsic information we have a flexible basis for making use of cross-species

alignments, e.g. with DIALIGN 2 [Mor99].

Codonusage in the human training set

aa:freq relative synonymous codon frequencies
G :0.0722 GGA:0.19 GGC:0.4 GGG:0.255 GGT:0.155
D :0.0442 GAC:0.609 GAT:0.391
E :0.065 GAA:0.326 GAG:0.674
R :0.0598 AGA:0.143 AGG:0.183 CGA:0.0921 CGC:0.267 CGG:0.235 CGT:0.0808
K :0.0518 AAA:0.35 AAG:0.65
N :0.0333 AAC:0.603 AAT:0.397
Q :0.0453 CAA:0.207 CAG:0.793
S :0.0791 AGC:0.282 AGT:0.132 TCA:0.114 TCC:0.243 TCG:0.0741 TCT:0.155
T :0.0513 ACA:0.231 ACC:0.42 ACG:0.136 ACT:0.214
A :0.0785 GCA:0.177 GCC:0.453 GCG:0.14 GCT:0.231
V :0.0622 GTA:0.087 GTC:0.254 GTG:0.519 GTT:0.139
L :0.1024 CTA:0.0583 CTC:0.217 CTG:0.471 CTT:0.102 TTA:0.0475 TTG:0.105
I :0.0414 ATA:0.116 ATC:0.569 ATT:0.314
F :0.0377 TTC:0.62 TTT:0.38
Y :0.0278 TAC:0.637 TAT:0.363
W:0.0131 TGG:1
H :0.0241 CAC:0.663 CAT:0.337
M:0.0210 ATG:1
C :0.0238 TGC:0.622 TGT:0.378
P :0.0651 CCA:0.228 CCC:0.369 CCG:0.146 CCT:0.257

Codonusage of nucleotides 10 to 24 of the genes in the human training set

aa:freq relative synonymous codon frequencies
G :0.0672 GGA:0.167 GGC:0.387 GGG:0.299 GGT:0.148
D :0.0283 GAC:0.632 GAT:0.368
E :0.0453 GAA:0.316 GAG:0.684
R :0.0646 AGA:0.137 AGG:0.166 CGA:0.101 CGC:0.251 CGG:0.272 CGT:0.0723
K :0.0481 AAA:0.278 AAG:0.722
N :0.0227 AAC:0.719 AAT:0.281
Q :0.0426 CAA:0.237 CAG:0.763
S :0.1009 AGC:0.248 AGT:0.0957 TCA:0.12 TCC:0.279 TCG:0.12 TCT:0.136
T :0.0573 ACA:0.25 ACC:0.418 ACG:0.147 ACT:0.185
A :0.0964 GCA:0.153 GCC:0.354 GCG:0.239 GCT:0.254
V :0.0534 GTA:0.0496 GTC:0.297 GTG:0.51 GTT:0.143
L :0.14 CTA:0.0456 CTC:0.255 CTG:0.479 CTT:0.0934 TTA:0.0334 TTG:0.0934
I :0.0292 ATA:0.138 ATC:0.644 ATT:0.218
F :0.0306 TTC:0.65 TTT:0.35
Y :0.0208 TAC:0.634 TAT:0.366
W:0.0179 TGG 1
H :0.0179 CAC:0.696 CAT:0.304
M:0.0185 ATG 1
C :0.0229 TGC:0.673 TGT:0.327
P :0.0746 CCA:0.219 CCC:0.372 CCG:0.196 CCT:0.213

Table 7: Codon and amino acid (aa) frequencies (freq). The first column shows the one-letter

code of the 20 amino acids and the relative frequency in the respective set. The sample sizes are

N = 510980 (above) and n = 6420 (below). For each amino acid the codons coding for it are listed

together with the relative frequencies of the codons coding for the amino acid. The upper table

shows the data of all codons in the human training set and the lower table shows the data for the

codons which begin in the range of the initial content model.

Bibliography

[AG00] J.F. Abril and R. Guigó. gff2ps: visualizing genomic annotations. Bioinfor-

matics, 16(8):743–744, 2000.

[AGM+90] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215:403–410, 1990.

[BA97] A.W. Bowman and A. Azzalini. Applied Smoothing Techniques for Data Anal-

ysis. Oxford Science Publications, 1997.

[BB99] John Besemer and Mark Borodovsky. Heuristic approach to deriving models

for gene finding. Nucleic Acids Research, 27(19):3911–3920, 1999.

[BD00] Ewan Birney and Richard Durbin. Using GeneWise in the Drosophila Anno-

tation Experiment. Genome Research, 10:547–548, 2000.

[BH00] Vineet Bafna and Daniel H. Huson. The Conserved Exon Method for Gene

Finding. Proc. Int. Conf. Intell. Syst. Mol. Biol., 8:3–12, 2000.

[BK97] Chris Burge and Samuel Karlin. Prediction of Complete Gene Structures in

Human Genomic DNA. Journal of Computational Biology, 268:78–94, 1997.

[BK98] Chris Burge and Samuel Karlin. Finding the genes in genomic DNA. Current

Opinion in Structural Biology, 8:346–354, 1998.

[BM93] M. Borodovsky and J. McIninch. Genmark: parallel gene recognition for both

DNA strands. Comp.Chem., 17:123–133, 1993.

[Bro02] T.A. Brown. Genomes 2. John Wiley & Sons Inc., 2002.

[BSS00] M. Burset, I.A. Seledtsov, and V.V. Solovyev. Analysis of canonical and non-

canonical splice sites in mammalian genomes. Nucleic Acids Research, 28:4364–

4375, 2000.

[Bur97] C.B. Burge. Identification of Genes in Human Genomic DNA. PhD thesis,

Stanford University, 1997.

95

BIBLIOGRAPHY 96

[BV02] Brona Brejova and Tomas Vinar. A better method for length distribution

modeling in HMMs and its application to gene finding. In A. Apostolico and

M. Takeda, editors, Combinatorial Pattern Matching, 13th Annual Symposium

(CPM), volume 2373 of Lecture Notes in Computer Science, pages 190–202,

Fukuoka, Japan, July 3-5 2002. Springer.

[BZ02] V. Brendel and Wei Zhu. Computational modeling of gene structure in Ara-

bidopsis thaliana. Plant Molecular Biology, 48:49–58, 2002.

[Cla97] Jean-Michel Claverie. Computational methods for the indentification of genes

in vertebrate genomic sequences. Human Molecular Genetics, 6(10):1735–1744,

1997.

[CP03] Simon L. Cawley and Lior Pachter. HMM sampling and applications to gene

finding and alternative splicing. Bioinformatics, 19 Suppl. 2:ii36–ii41, 2003.

[CSP97] Candace J. Coolidge, J. Seely, Raymond, and James G. Patton. Functional

analysis of the polypyrimidine tract in pre-mRNA splicing. Nucleic Acids

Research, 25(4):888–896, 1997.

[Fic82] James W. Fickett. Recognition of protein coding regions in DNA sequences.

Nucleid Acids Research, 10:5303–5318, 1982.

[FT92] J.W. Fickett and C.S. Tung. Assessment of protein coding measures. Nucleic

Acids Research, 20:6441–6450, 1992.

[FYSB02] William G. Fairbrother, Ru-Fang Yeh, Philip A. Sharp, and Chris Burge. Pre-

dictive Identification of Exonic Splicing Enhancers in Human Genes. Science,

297:1007–1012, 2002.

[GAA+00] R. Guigó, P. Agarwal, J. Abril, M. Burset, and J.W. Fickett. An Assessment of

Gene Prediction Accuracy in Large DNA Sequences. Genome Res., 10:1631–

1642, 2000.

[Hat02] Artemis G. Hatzigeorgiou. Translation initiation start prediction in human

cDNAs with high accuracy. Bioinformatics, 18(2):343–350, 2002.

[Hau] David Haussler. Computational Genefinding. http://www.soe.ucsc.edu/

˜haussler/pubs.html.

[HFF+03] L.W. Hillier, R.S. Fulton, L.A. Fulton, T.A. Graves, K.H. Pepin, C. Wagner-

McPherson, D. Layman, J. Maas, S. Jaeger, R. Walker, and et al. The DNA

sequence of human chromosome 7. Nature, 424:157–164, 2003.

BIBLIOGRAPHY 97

[HSF97] J. Henderson, S. Salzberg, and K.H. Fasman. Finding genes in DNA with a

Hidden Markov Model. Journal of Computational Biology, 4(2):127–141, 1997.

[KA90] Samuel Karlin and Stephen F. Altschul. Methods for assessing the statistical

significance of molecular sequence features by using general scoring schemes.

Proc. Natl. Acad. Sci. USA, 87:2264–2268, 1990.

[KFDB01] Ian Korf, Paul Flicek, Daniel Duan, and Michael R. Brent. Integrating Ge-

nomic Homology into Gene Structure Prediction. Bioinformatics, 1 Suppl.

1:S1–S9, 2001.

[KHRE96] D. Kulp, D. Haussler, M.G. Reese, and F.H. Eeckman. A generalized hidden

Markov model for the recognition of human genes in DNA. Proc. Int. Conf.

Intell. Syst. Mol. Biol., 4:134–142, 1996.

[KHRE97] D. Kulp, D. Haussler, M.G. Reese, and F.H. Eeckman. Integrating database

homology in a probabilistic gene structure model. Pac. Symp. Biocomput.,

2:232–244, 1997.

[KMH94] A. Krogh, I.S. Mian, and D. Haussler. A hidden Markov model that finds

genes in E. coli DNA. Nucleic Acids Research, 22:4768–4778, 1994.

[Kni95] Rolf Knippers. Molekulare Genetik. Georg Thieme Verlag, 1995.

[Kre91] Ulrich Krengel. Einführung in die Wahrscheinlichkeitstheorie und Statistik.

Vieweg, 1991.

[KRGS01] Zhengyan Kan, Eric C. Rouchka, Warren R. Gish, and David J. States. Gene

Structure Prediction and Alternative Splicing Analysis Using Genomically

Aligned Ests. Genome Research, 11:889–900, 2001.

[Kro97] Anders Krogh. Two methods for improving performance of an HMM and

their application for gene finding. Proc. Fifth Int. Conf. Intelligent Systems

for Molecular Biology, pages 179–186, 1997.

[Kro00] Anders Krogh. Using Database Matches with HMMGene for Automated Gene

Detection in Drosophila. Genome Research, (10):523–528, 2000.

[Kul03] David C. Kulp. Protein-Coding Gene Structure Prediction using Generalized

Hidden Markov Models. PhD thesis, University of California, Santa Cruz,

2003.

[LB01] Lee P. Lim and Chris Burge. A computational analysis of sequence features

involved in recognition of short introns. Biochemistry, 98(20):11193–11198,

2001.

BIBLIOGRAPHY 98

[MD02] Irmtraud M. Meyer and Richard Durbin. Comparative ab initio prediction of

gene structures using pair HMMs. Bioinformatics, 18(10):1309–1318, 2002.

[Mor99] B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment ap-

proach to multiple sequence alignment. Bioinformatics, 15:211–218, 1999.

[MRA+02] B. Morgenstern, O. Rinner, S. Abdeddaim, D. Haase, K. Mayer, A. Dress, and

H.-W. Mewes. Exon Discovery by Genomic Sequence Alignment. Bioinfor-

matics, 18:777–787, 2002.

[MSSR02] Chatherine Mathé, Marie-France Sagot, Thomas Schiex, and Pierre Rouzé.

Current methods of gene prediction, their strengths and weaknesses. Nucleic

Acids Research, 30(19):4103–4117, 2002.

[MW02] Rainer Merkl and Stephan Waack. Bioinformatik Interaktiv. Wiley-VCH,

2002.

[PAA+03] G. Parra, P. Agarwal, J. Abril, T. Wiehe, J.W. Fickett, and R. Guigó. Compar-

ative Gene Prediction in Human and Mouse. Genome Research, 13:108–117,

2003.

[PEG00] Geńıs Parra, Blanco Enrique, and Roderic Guigó. GeneID in Drosophila.

Genome Research, 10:511–515, 2000.

[PLS01] Mihaela Pertea, Xiaoying Lin, and Steven L. Salzberg. Genesplicer: a new

computational method for splice site prediction. Nucleic Acids Research,

29(5):1185–1190, 2001.

[Ree00] Martin G. Reese. Computational prediction of gene structure and regulation in

the genome of Drosophila melanogaster. PhD thesis, Universität Hohenheim,

2000.

[RGH+00] M.G. Reese, Hartzell G., N.L. Harris, U. Ohler, J.F. Abril, and Lewis S.E.

Genome Annotation Assessment in Drosophila melanogaster. Genome Re-

search, 10(4):391–393, 2000.

[RKTH00] Martin G. Reese, David Kulp, Hari Tammana, and David Haussler. Gene

Finding in Drosophila melanogaster. Genome Research, 10:529–538, 2000.

[RM02] Oliver Rinner and Burkhard Morgenstern. AGenDA: Gene prediction by com-

parative sequence analysis. In Silico Biology, 2, 2002.

[RMO01] Sanja Rogic, Alan K. Mackworth, and Francis B.F. Ouellette. Evaluation of

Gene-finding Programs on Mammalian Sequences. Genome Research, 11:817–

832, 2001.

BIBLIOGRAPHY 99

[Ros96] Sheldon M. Ross. Stochastic Processes. John Wiley & Sons, 1996.

[Sch03] Oliver Schöffmann. Gewinnung extrinsischer Informationen zur Genvorhersage

und Einbindung in ein Hidden Markov Modell. Master’s thesis, Universität

Göttingen, 2003.

[SDSO98] Steven L. Salzberk, Arthur L. Delcher, Kasif Simon, and White Owen. Mi-

crobial gene identification using interpolated Markov models. Nucleic Acids

Research, 26(2):544–548, 1998.

[SGH+98] W. Seyffert, H.G. Gassen, O. Hess, H. Jäckle, and K.-F. Fischbach. Lehrbuch

der Genetik. Gustav Fischer Verlag, 1998.

[SM82] R. Staden and A.D. McLachlan. Codon preference and its use in identifying

protein coding regions in long DNA sequences. Nucleid Acids Research, 10:141–

156, 1982.

[SS95] E. Snyder and G. Stormo. Identification of protein coding regions in genomic

DNA. Journal of Molecular Biology, 248:1–18, 1995.

[Str91] B. Stroustrup. The C++ Programming Language. Addison-Wesley Series in

Computer Science, 1991.

[SW03] Mario Stanke and Stephan Waack. Gene prediction with a hidden markov

model and new intron submodel. Bioinformatics, 19 Suppl. 2:ii215–ii225, 2003.

[TDZ01] Jack E. Tabaska, Ramana V. Davuluri, and Michael Q. Zhang. Identifying the

3’-terminal exon in human DNA. Bioinformatics, 17(7):602–607, 2001.

[TRG+03] L. Taher, O. Rinner, S. Gargh, A. Sczyrba, M. Brudno, S. Batzoglou, and

M. Morgenstern. Homology-based gene prediction. Bioinformatics, 19:1575–

1577, 2003.

[UZB00] Jonathan Usuka, Wei Zhu, and Volker Brendel. Optimal spliced alignment of

homologous cDNA to a genomic DNA template. Bioinformatics, 16(3):203–

211, 2000.

[Vit67] A. Viterbi. Error bounds for convolutional codes and an asymptotically opti-

mal decoding algorithm. IEEE Trans. Informat. Theor., IT-13:260–269, 1967.

[WPY01] G.K.-S. Wong, D.A. Passey, and J. Yu. Most of the Human Genome is Tran-

scribed. Genome Research, 11:1975–1977, 2001.

BIBLIOGRAPHY 100

[YLB01] Ru-Fang Yeh, Lee P. Lim, and Chris Burge. Computational Inference of Ho-

mologous Gene Structures in the Human Genome. Genome Research, 11:803–

816, 2001.

[Zha98] M.Q. Zhang. Statistical features of human exons and their flanking regions.

Human Molecular Genetics, 7(5):919–932, 1998.

Lebenslauf

Name Mario Stanke

Geburtsdatum 18. Juni 1974

Geburtsort Witzenhausen

Staatsangehörigkeit deutsch

Schulbildung

1980 bis 1984 Grundschule in Bad Sooden-Allendorf

1984 bis 1986 Förderstufe in Bad Sooden-Allendorf

1986 bis 1993 Rhenanus-Schule Bad Sooden-Allendorf

Juni 1993 allgemeine Hochschulreife

Wehrdienst

Juli 1993 bis Juni 1994 Grundwehrdienst in Bad Frankenhausen und Sontra

Studium

Oktober 1994 bis Juli 1996 und Studium der Mathematik im Diplomstudiengang an der

Oktober 1997 bis Februar 2000 Georg-August-Universität Göttingen (Nebenfach Informatik)

August 1996 bis Mai 1997 Studium der Mathematik und Informatik an der

University of California in Berkeley

Februar 2000 Diplomprüfung in Mathematik

seit Oktober 2000 Promotionsstudium im Fach Informatik

an der Georg-August-Universität Göttingen

Berufstätigkeit

Juli 1997 bis September 1997 studentischer Mitarbeiter am Lawrence Berkeley Lab, Berkeley, USA

WS 97/98, WS 98/99, SS 99, studentische Hilfskraft am mathematischen und stochastischen

WS 99/00 Institut der Universität Göttingen

Juli 1998 bis September 1998 Praktikum bei der Victoria Versicherung in Düsseldorf

März 2000 bis August 2000 Anwendungsentwicker bei Framfab in Köln

Oktober 2000 bis März 2002 wissenschaftlicher Mitarbeiter am stochastischen Institut

der Universität Göttingen

Januar 2002 bis Dezember 2002 wissenschaftliche Hilfskraft am Institut für Numerische und

Angewandte Mathematik der Universität Göttingen

Januar 2003 bis Februar 2003 wissenschaftliche Hilfskraft am Institut für Mikrobiologie und

Genetik der Universität Göttingen

seit März 2003 wissenschaftlicher Mitarbeiter der Abteilung Bioinformatik des

Instituts für Mikrobiologie und Genetik der Universität Göttingen

	Abstract
	Acknowledgments
	Abbreviations
	Introduction
	Generalized Hidden Markov Models
	Notation
	Definition of a Generalized Hidden Markov Model
	Viterbi Algorithm
	Forward Algorithm
	Sampling Algorithm

	A Generalized Hidden Markov Model for Genomic Sequences
	History of GHMMs for Gene Prediction
	Definition of the GHMM AUGUSTUS
	States and Transitions
	Emission Distributions
	Length distributions
	Sequence distributions

	Statistics of Selected Submodels
	GC Content Dependent Training
	Variants of the Model

	Further Analysis
	A-Posteriori Probabilities and Sampling
	A-Posteriori Probability of the Predicted Gene Structure
	A-Posteriori Probability of the True Gene Structure
	Sampling Gene Structures

	Improving State Models Can Worsen the Overall Model

	Using Extrinsic Information -- AUGUSTUS+ and AGRIPPA
	The Methods of Other Programs
	Extrinsic Information about Genes
	The Program Agrippa
	Using protein database matches
	Using EST database matches
	Combining EST with protein database matches

	Types of Extrinsic Information

	Extended Model - AUGUSTUS Takes Hints
	Goals of the Modeling
	The extended Emission Alphabet
	The extended Emission Distribution
	Relevance of the length of hints
	Relevance of the BLAST e-value
	Choice of the set of grades
	Estimating rj+ and rj-

	Impact of the Hints on the Prediction

	Implementation
	The Programs
	Space and Running Time
	Output of AUGUSTUS
	Web Server

	Results of AUGUSTUS
	 Test Sets
	 Training Sets
	Accuracy
	Comparison to Other Programs
	AUGUSTUS
	AUGUSTUS+

	Comparison to Variants of AUGUSTUS
	Discussion

	Bibliography

