Kapitel 1

Genvorhersage

Vorlesung *Algorithmen der Bioinformatik II* vom 27 und 29. April 2010
These Slides Available At:

http://gobics.de/mario/Abill
The study aims of this week.

1. understand the problem setting of gene finding
2. learn about algorithmic solutions: exon chaining, GHMMs
3. learn about pair HMMs
 (used both for gene finding and alignments)
Overview

1. **Introduction to Gene-Finding-Problem**
 What Do Genes Look Like?
 Statistical Features of Genes

2. **Gene Finding Through Exon-Chaining**
 The One-Dimensional Chaining Problem
 Exon-Chaining Algorithm

3. **Gene Finding with HMMs**
 Generalized HMMs
 Model Design
 Training

4. **Pair Hidden Markov Models**
 Definitions
 Application: Comparative Gene Prediction
Prokaryotes, Eukaryotes

Prokaryotes

Prokaryotes are the set of species that lack a cell nucleus.
\{prokaryotes\} = \{bacteria\} \cup \{archeia\}

Eukaryotes

Eukaryote are the set of species whose cells have a nucleus. May be unicellular (e.g. some algae) or multicellular (plants and animals).
Prokaryotes, Eukaryotes

- the structure of prokaryotic genes is less complex than those of eukaryotes.
Prokaryotes, Eukaryotes

- the structure of prokaryotic genes is less complex than those of eukaryotes.
- prokaryotic gene finding is
 - easier,
 - algorithmically less interesting
 - and can be considered a special case (missing introns).
Prokaryotes, Eukaryotes

- the structure of prokaryotic genes is less complex than those of eukaryotes.
- prokaryotic gene finding is
 - easier,
 - algorithmically less interesting
 - and can be considered a special case (missing introns).
- We will therefore restrict lecture to eukaryotes
Structure of a eukaryotic gene

UTR = UnTranslated Region = part of mRNA that is not translated
CDS = Coding Sequence = part of mRNA (exon) that is translated

zwischen-genische Region

DNA

Transkription

prä-mRNA
Structure of a eukaryotic gene

DNA
...actaacactactattgtggtgcgggtggtgggtggggatgtcctttctctgtgctgttcaggtgcggggggtttgtattgggtt
Structure of a eukaryotic gene

DNA → Transkription → prä-mRNA → Splicing → mRNA

Gen A → kodierende Sequenz von Gen A
Gen B → kodierende Sequenz von Gen B
Structure of a eukaryotic gene

DNA: ...actaatgcatct.catt...
prä−mRNA: ...atgtatgagggagcggtgctctcacagtgaggatga...
mRNA: ...cgagucaagguguaggcaauguccuuuuuucuagucaugguuggcaaacagugggaucc...
Gen A: ...atgtccttttttctagtcatagtcagataa...
Gen B: ...atgtatgagggagcggtgctctcacagtgaggatga...
Translation und Faltung: Protein A, Protein B.
Structure of a eukaryotic gene

UTR = UnTranslated Region = part of mRNA that is not translated
CDS = Coding Sequence = part of mRNA (exon) that is translated

DNA → Transcription → prä−mRNA → Splicing → mRNA → Translation und Faltung

Gen A
Exon UTR CDS Intron Exon UTR CDS Intron
zwischen−genische Region

Gen B
Exon UTR CDS Intron Exon CDS Intron Exon CDS Intron Exon CDS UTR Intron UTR
zwischen−genische Region

UTR UTR UTR UTR
Intron Intron
Exon Exon Exon Exon Exon Exon Exon
CDS CDS CDS CDS CDS CDS CDS

kodierende Sequenz von Gen A
Protein A

kodierende Sequenz von Gen B
Protein B
Structure of a eukaryotic gene

Gen A

DNA -> prä-mRNA -> mRNA -> Protein A

Gen B

DNA -> prä-mRNA -> mRNA -> Protein B

Translation und Faltung

Transkription

Spleißen
Translation

Die DNA-Sequenz wird in eine Aminosäurensequenz übersetzt. Hier ist ein Beispiel der Übersetzung eines kurzen DNA-Kodons in Aminosäuren:

```
ATG TAT GAG ...
```

Die Übersetzung beginnt in der Regel an der ATG-Stelle (Startcodon) und endet entweder in einem von drei Stoppcodons (UAA, UAG, UGA). Der "universelle" genetische Code zeigt die Übersetzung der einzelnen Codons in Aminosäuren:

<table>
<thead>
<tr>
<th>Kodon (DNA)</th>
<th>Aminosäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGA</td>
<td>T</td>
</tr>
<tr>
<td>TAA</td>
<td>Y</td>
</tr>
<tr>
<td>TAT</td>
<td>E</td>
</tr>
<tr>
<td>ATG</td>
<td>M</td>
</tr>
</tbody>
</table>

Die Übersetzung erfolgt in drei Nukleotid-Banden (Codons), wobei jedes Codon eine spezifische Aminosäure codiert. Die Übersetzung endet nach dem letzten Codon, das einen von drei Stoppcodons kodiert.
Translation

Lernziele / Study Aims

- Introduction to Gene-Finding-Problem
- What Do Genes Look Like?
- Statistical Features of Genes
- Gene Finding Through Exon-Chaining
 - The One-Dimensional Chaining Problem
 - Exon-Chaining Algorithm
- Gene Finding with HMMs
 - Generalized HMMs
 - Model Design
 - Training
- Pair Hidden Markov Models
 - Definitions
 - Application: Comparative Gene Prediction

Translation

```
DNA-Sequenz

<table>
<thead>
<tr>
<th>atg</th>
<th>tat</th>
<th>gag</th>
<th>...</th>
<th>gga</th>
<th>tga</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Y</td>
<td>E</td>
<td>...</td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>
```

Intron

```
aminosequenz von DNA-Sequenz kodierende
```

```
Kodons
```

```
1.8
```

```
Tabelle: "universeller" genetischer Code

<table>
<thead>
<tr>
<th>Kodon (DNA)</th>
<th>Aminosäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>K</td>
</tr>
<tr>
<td>aac</td>
<td>N</td>
</tr>
<tr>
<td>aag</td>
<td>K</td>
</tr>
<tr>
<td>aat</td>
<td>N</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>atg</td>
<td>M</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>61</td>
<td>20</td>
</tr>
</tbody>
</table>
```

```
Faltung
```

eines von 3 Stopp-Kodons, nur am Ende

```
Aminosäuren
DNA-Sequenz
```

```
... nur am Ende
```

```
Protein
```

```
emanohren
```

```
Statistical Features of Genes
```

```
Genes
```

```
Exon-Chaining
```

```
The One-Dimensional Chaining Problem
```

```
Exon-Chaining Algorithm
```

```
Gene Finding with HMMs
```

```
Generalized HMMs
```

```
Model Design
```

```
Training
```

```
Pair Hidden Markov Models
```

```
Definitions
```

```
Application: Comparative Gene Prediction
```

```
1.8
```

```
DNA-Sequenz
```

```
Kodons
```

```
Intron
```

```
Faltung
```

eines von 3 Stopp-Kodons, nur am Ende

```
Aminosäuren
DNA-Sequenz
```

```
... nur am Ende
```

```
Protein
```

```
emanohren
```

```
Statistical Features of Genes
```

```
Genes
```

```
Exon-Chaining
```

```
The One-Dimensional Chaining Problem
```

```
Exon-Chaining Algorithm
```

```
Gene Finding with HMMs
```

```
Generalized HMMs
```

```
Model Design
```

```
Training
```

```
Pair Hidden Markov Models
```

```
Definitions
```

```
Application: Comparative Gene Prediction
```

```
1.8
```
Translation

Übersicht:
- kodierende DNA-Sequenz
- Sequenz von Aminosäuren
- Protein

Kodons:
- atg ⇔ M
- tat ⇔ Y
- gag ⇔ E
- gga ⇔ G
- tga

Intron
- eines von 3 Stopp-Kodons, nur am Ende

<table>
<thead>
<tr>
<th>Kodon (DNA)</th>
<th>Aminosäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>K</td>
</tr>
<tr>
<td>aac</td>
<td>N</td>
</tr>
<tr>
<td>aag</td>
<td>K</td>
</tr>
<tr>
<td>aat</td>
<td>N</td>
</tr>
<tr>
<td>atg</td>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kodons</th>
<th>Aminosäuren</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>20</td>
</tr>
</tbody>
</table>

"universeller" genetischer Code

Beispiel:
- Aminosäuresequenz: ME
- DNA-Sequenz: atg tat gag...

Tabelle:

- aaa → K
- aac → N
- aag → K
- aat → N
- atg → M

1.8
Translation

Kodons

DNA-Sequenz

Sequenz von Aminosäuren

Protein

Statistical Features of Genes

Gene Finding Through Exon-Chaining

The One-Dimensional Chaining Problem

Exon-Chaining Algorithm

Gene Finding with HMMs

Generalized HMMs

Model Design

Training

Pair Hidden Markov Models

Definitions

Application: Comparative Gene Prediction

"universeller" genetischer Code

<table>
<thead>
<tr>
<th>Kodon (DNA)</th>
<th>Aminosäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>K</td>
</tr>
<tr>
<td>aac</td>
<td>N</td>
</tr>
<tr>
<td>aag</td>
<td>K</td>
</tr>
<tr>
<td>aat</td>
<td>N</td>
</tr>
<tr>
<td>atg</td>
<td>M</td>
</tr>
</tbody>
</table>

... 61 20 Aminosäuren
Signals

- transcription start site
- translation start site
- donor (5') splice site
- acceptor (3') splice site
- transcription termination site
- translation end (stop codon)

chr2L:

<table>
<thead>
<tr>
<th>1187000</th>
<th>1188000</th>
<th>1189000</th>
<th>1190000</th>
<th>1191000</th>
<th>1192000</th>
<th>1193000</th>
<th>1194000</th>
<th>1195000</th>
<th>1196000</th>
<th>1197000</th>
</tr>
</thead>
</table>

FlyBase Protein-Coding Genes

CG5001

example from fruit fly
Signals

transcription start site

translation start site
donor (5’) splice site

acceptor (3’) splice site

transcription termination site

donor (5’)
splice site

branch point
region

acceptor (3’)
splice site

example from fruit fly

donor splice site (DSS) signal

acceptor splice site (ASS) signal

Frequency of the nucleotides at positions relative to splice site.

from green algae *Chlamydomonas*
Branch point: upstream of 3’ splice site, a single conserved adenine at variable distance to 3’ splice site (≈ -30), a splicing complex binds to it, pyrimidine (C,T) rich in human
Transcription start site: Transcription from DNA to RNA by RNA polymerase starts here facilitated by **promoter** elements.

Promoter elements are diverse and their profiles tend to contain little info:

- diverse transcription factor binding sites at very variable positions
- sometimes TATA-box
- “CpG islands”
Transcription termination site (TTS):

- cleavage of the transcript.
- some non-templated A’s are appended (polyadenylation).
- polyadenylation is triggered in many species in many genes by the hexamer aataaa roughly 15 bp upstream of the TTS.
Start and stop codon:

- **start codon:** ATG
- **stop codons:** TAA, TAG, TGA

In some species the genetic code is altered and a “stop codon” is actually coding for an amino acid.
Nucleotide Composition of Coding and Noncoding Regions

Sequence Content

Besides the signals, **position-unspecific** frequencies of nucleotide patterns can be used to guess biological classification (e.g. CDS, non-coding, CpG-island) of longer sequence intervals.

Example (GC content in red flour beetle)

Typically, higher order patterns are examined:
E.g. reading-frame dependent k-mer frequencies ($k = 5, 6$) for protein-coding regions.

Remark

Sequence content is usually only **indirect** evidence.
Problems and General Ansatz

Problems

- known signal models do not carry much information

Ansatz

- combine all individual weak info to boost discriminatory power
- enforce standard gene structure:
 - reading frame consistency between exons
 - minimal splice site consensus (GT/AG, maybe GC/AG)
 - no in-frame stop codons
 - minimal intron length (≈40 bp)
Problems and General Ansatz

Problems

- known signal models do not carry much information
- false positive signals because of low number of true positives

Ansatz
- combine all individual weak info to boost discriminatory power
- enforce standard gene structure:
 - reading frame consistency between exons
 - minimal splice site consensus (GT/AG, maybe GC/AG)
 - no in-frame stop codons
 - minimal intron length (≈ 40 bp)
Problems and General Ansatz

Problems

- known signal models do not carry much information
- false positive signals because of low number of true positives
- sequence content can be misleading (pseudogenes, repeats)

Ansatz

- combine all individual weak info to boost discriminatory power
- enforce standard gene structure:
 - reading frame consistency between exons
 - minimal splice site consensus (GT/AG, maybe GC/AG)
 - no in-frame stop codons
 - minimal intron length (≈ 40 bp)
Problems and General Ansatz

Problems

- known signal models do not carry much information
- false positive signals because of low number of true positives
- sequence content can be misleading (pseudogenes, repeats)

Ansatz

- combine all individual weak info to boost discriminatory power
Problems and General Ansatz

Problems

- known signal models do not carry much information
- false positive signals because of low number of true positives
- sequence content can be misleading (pseudogenes, repeats)

Ansatz

- **combine** all individual weak info to boost discriminatory power
- **enforce standard** gene structure:
 - reading frame consistency between exons
 - minimal splice site consensus (GT/AG, maybe GC/AG)
 - no in-frame stop codons
 - minimal intron length (≈ 40 bp)
1. Introduction to Gene-Finding-Problem
 - What Do Genes Look Like?
 - Statistical Features of Genes

2. Gene Finding Through Exon-Chaining
 - The One-Dimensional Chaining Problem
 - Exon-Chaining Algorithm

3. Gene Finding with HMMs
 - Generalized HMMs
 - Model Design
 - Training

4. Pair Hidden Markov Models
 - Definitions
 - Application: Comparative Gene Prediction
Lernziele / Study Aims

Introduction to Gene-Finding-Problem
What Do Genes Look Like?
Statistical Features of Genes

Gene Finding Through Exon-Chaining
The One-Dimensional Chaining Problem
Exon-Chaining Algorithm

Gene Finding with HMMs
Generalized HMMs
Model Design
Training

Pair Hidden Markov Models
Definitions
Application: Comparative Gene Prediction

http://gobics.de/mario/genomanalyse/script.pdf pages 28-32
Problem Definition

Definition

Let $\mathcal{B} = \{B_1, B_2, \ldots, B_n\}$ be a set of intervals with boundaries given by $B_j = [\ell_j, r_j)$ and $\ell_j < r_j$, $(j = 1, \ldots, n)$. Let $s_j \in \mathbb{R}$ be the score of interval B_j.
Problem Definition

Definition

Let $\mathcal{B} = \{B_1, B_2, \ldots, B_n\}$ be a set of intervals with boundaries given by $B_j = [\ell_j, r_j]$ and $\ell_j < r_j$, ($j = 1, \ldots, n$). Let $s_j \in \mathbb{R}$ be the **score** of interval B_j. A **chain** $\Gamma = (B_{j_1}, B_{j_2}, \ldots, B_{j_d})$ is a sorted sequence of non-overlapping intervals (i.e. $r_{j_i} \leq \ell_{j_{i+1}}$).
Problem Definition

Definition

Let $\mathcal{B} = \{B_1, B_2, \ldots, B_n\}$ be a set of intervals with boundaries given by $B_j = [\ell_j, r_j)$ and $\ell_j < r_j$, ($j = 1, \ldots, n$).

Let $s_j \in \mathbb{R}$ be the score of interval B_j.

A chain $\Gamma = (B_{j_1}, B_{j_2}, \ldots, B_{j_d})$ is a sorted sequence of non-overlapping intervals (i.e. $r_{j_i} \leq \ell_{j_{i+1}}$).

The score of a chain is the sum of the scores of its intervals:

\[
\text{s}(\Gamma) = \sum_{i}^{d} s_{j_i}
\]
Problem Definition

Definition

Let \(B = \{B_1, B_2, \ldots, B_n\} \) be a set of intervals with boundaries given by \(B_j = [\ell_j, r_j) \) and \(\ell_j < r_j \), \((j = 1, \ldots, n)\). Let \(s_j \in \mathbb{R} \) be the score of interval \(B_j \).

A chain \(\Gamma = (B_{j_1}, B_{j_2}, \ldots, B_{j_d}) \) is a sorted sequence of non-overlapping intervals (i.e. \(r_{j_i} \leq \ell_{j_{i+1}} \)).

The score of a chain is the sum of the scores of its intervals:

\[
s(\Gamma) = \sum_{i}^{d} s_{j_i}
\]

Definition (One-dimensional Chaining Problem)

For a given set of scored intervals \(B \) find a chain with maximal score.
Example Chaining Problem

Example

\[
\begin{align*}
B_1 &= [0, 1), s_1 = 1 \\
B_2 &= [0, 3), s_2 = 2 \\
B_3 &= [2, 4), s_3 = 2 \\
B_4 &= [2, 6), s_4 = 2 \\
B_5 &= [5, 8), s_5 = 3 \\
B_6 &= [7, 8), s_6 = 2 \\
\Gamma &= \{B_1, \ldots, B_6\}
\end{align*}
\]

![Diagram](chart.png)
Example Chaining Problem

Example

\[B_1 = [0, 1), s_1 = 1 \]
\[B_2 = [0, 3), s_2 = 2 \]
\[B_3 = [2, 4), s_3 = 2 \]
\[B_4 = [2, 6), s_4 = 2 \]
\[B_5 = [5, 8), s_5 = 3 \]
\[B_6 = [7, 8), s_6 = 2 \]
\[B = \{ B_1, \ldots, B_6 \} \]

\[\Gamma = (B_1, B_3, B_5) \] is the chain with maximal score.
How to Solve the Chaining Problem?

- **brute force** too slow: There are 2^n possible chains.
How to Solve the Chaining Problem?

- **brute force** too slow: There are 2^n possible chains.
- **greedy** approach does not correctly solve the problem:

 \[
 \Gamma \leftarrow () \\
 \text{repeat} \\
 \quad \text{insert highest-scoring interval into } \Gamma \text{ that does not overlap any interval already in } \Gamma \\
 \text{until} \text{ no more interval can be inserted}
 \]
How to Solve the Chaining Problem?

- **brute force** too slow: There are 2^n possible chains.
- **greedy** approach does not correctly solve the problem:

 \[
 \Gamma \leftarrow ()
 \]

 repeat

 insert highest-scoring interval into Γ that does not overlap any interval already in Γ

 until no more interval can be inserted

 trivial counterexample:

 B_1 B_2 B_3
Chaining Algorithm

One-Dimensional Chaining Algorithm

1: \(P \leftarrow \text{sort} \{\ell_1, r_1, \ell_2, r_2, \ldots, \ell_n, r_n\} \) increasingly
2: \(S \leftarrow q \leftarrow q_1 \leftarrow \cdots \leftarrow q_n \leftarrow S_1 \leftarrow \cdots S_n \leftarrow 0 \)
3: \textbf{while} \(P \) not empty \textbf{do}
4: \(b \leftarrow \text{remove smallest element in} \ P \)
5: \textbf{for all} \(j \) such that \(r_j = b \) \textbf{do}
6: \textbf{if} \(S_j > S \) \textbf{then}
7: \(S \leftarrow S_j \)
8: \(q \leftarrow j \)
9: \textbf{end if}
10: \textbf{end for}
11: \textbf{for all} \(j \) such that \(\ell_j = b \) \textbf{do}
12: \(S_j \leftarrow s_j + S \)
13: \(q_j \leftarrow q \)
14: \textbf{end for}
15: \textbf{end while}
16: output \(S \) as score of best chain
Chaining Algorithm

Backtracking

17: $\Gamma \leftarrow ()$

18: \textbf{while } $q \neq 0$ \textbf{do}

19: \hspace{1em} push B_q onto Γ

20: \hspace{1em} $q \leftarrow q_q$

21: \textbf{end while}

22: reverse order of Γ

23: output Γ as highest scoring chain
Correctness

Invariants of the Algorithm

1. After every iteration of the main loop in line 3, S is the score of the best chain without interval boundaries beyond b.

2. After every iteration of the main loop in line 3, S_j is the score of the best chain that ends with interval B_j for all j with $\ell_j \leq b$.

Proof by induction on the iteration of the main loop in line 3. It follows that after the last iteration S is the score of the overall best chain.

Pointers for Backtracking

Unless undefined ($q_j = 0$), q_j is the index of the interval immediately left of B_j in a best chain that contains B_j.
Example Algorithm Run

Example

After initialization (line 2):

\[P = (0, 1, 2, 3, 4, 5, 6, 7, 8) \]

\[S = 0 \]

\[q = 0 \]

\[B_{1,s_1} = 1 \]

\[B_{1,s_2} = B_{3,s_3} = 2 \]

\[B_{4,s_4} = 2 \]

\[B_{5,s_5} = 3 \]

\[B_{6,s_6} = 2 \]
Example Algorithm Run

Example

After 1st iteration of main loop (line 3):

\(S = 0 \)

\(q = 0 \)
Example Algorithm Run

Example

After 2nd iteration of main loop (line 3):
$S = 1$
$q = 1$

$$\begin{align*}
S_1 &= 1, \quad q_1 = 0 \\
B_1, s_1 &= 1 \\
S_2 &= 2, \quad q_2 = 0 \\
B_1, s_2 &= 2 \\
B_3, s_3 &= 2 \\
B_4, s_4 &= 2 \\
B_5, s_5 &= 3 \\
B_6, s_6 &= 2 \\
b &= 1
\end{align*}$$
Example Algorithm Run

Example

After 3rd iteration of main loop (line 3):

\[S = 1 \]
\[q = 1 \]
Example Algorithm Run

Example

After 4th iteration of main loop (line 3):

\[S = 2 \]
\[q = 2 \]
Example Algorithm Run

Example

After 5th iteration of main loop (line 3):

\[S = 3 \]
\[q = 3 \]
Example Algorithm Run

Example

After 6th iteration of main loop (line 3):
\[S = 3 \]
\[q = 3 \]
Example Algorithm Run

Example

After 7th iteration of main loop (line 3):

\[S = 3 \]
\[q = 3 \]
Example Algorithm Run

Example

After 8th iteration of main loop (line 3):

\[S = 3 \]
\[q = 3 \]
Example Algorithm Run

Example

After last iteration of main loop (line 3):

\[S = 6 \]
\[q = 5 \]

Diagram showing the state transitions and exon chaining:
Example Algorithm Run

Example

Backtracking:
Follow q_j pointers starting from $q = 5$ until $q = 0$.
$\Gamma = (B_1, B_3, B_5)$

\[
\begin{align*}
S_1 &= 1, q_1 = 0 \\
B_1, s_1 &= 1 \\
S_2 &= 2, q_2 = 0 \\
B_1, s_2 &= 2 \\
S_3 &= 3, q_3 = 1 \\
B_3, s_3 &= 2 \\
S_4 &= 3, q_4 = 1 \\
B_4, s_4 &= 2 \\
S_5 &= 6, q_5 = 3 \\
B_5, s_5 &= 3 \\
S_6 &= 5, q_6 = 3 \\
B_6, s_6 &= 2
\end{align*}
\]
Running Time

Sorting of interval boundaries (line 1):

Running Time

Sorting of interval boundaries (line 1):

Running Time

Sorting of interval boundaries (line 1):

Running Time

Sorting of interval boundaries (line 1):
Running Time

Running Time

Sorting of interval boundaries (line 1): $O(n \log n)$
Overall time in main loop (lines 3-15):
Running Time

Running Time

Sorting of interval boundaries (line 1): \(O(n \log n) \)
Overall time in main loop (lines 3-15): \(O(n) \)
Backtracking:
Running Time

Sorting of interval boundaries (line 1): $O(n \log n)$
Overall time in main loop (lines 3-15): $O(n)$
Backtracking: $O(n)$

Overall running time:
Running Time

Sorting of interval boundaries (line 1): $O(n \log n)$
Overall time in main loop (lines 3-15): $O(n)$
Backtracking: $O(n)$

Overall running time: $O(n \log n)$
Running Time

<table>
<thead>
<tr>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorting of interval boundaries (line 1): $O(n \log n)$</td>
</tr>
<tr>
<td>Overall time in main loop (lines 3-15): $O(n)$</td>
</tr>
<tr>
<td>Backtracking: $O(n)$</td>
</tr>
<tr>
<td>Overall running time: $O(n \log n)$</td>
</tr>
</tbody>
</table>

Remarks:
- The linear running time of the main loop can be realized when for each interval boundary in P a list of intervals ending and starting at b is stored. For each interval the loops 5-10 and 11-14 are then executed exactly once each (amortized analysis).
Running Time

Running Time

Sorting of interval boundaries (line 1): $O(n \log n)$

Overall time in main loop (lines 3-15): $O(n)$

Backtracking: $O(n)$

Overall running time: $O(n \log n)$

Remarks:

- The linear running time of the main loop can be realized when for each interval boundary in P a list of intervals ending and starting at b is stored. For each interval the loops 5-10 and 11-14 are then executed exactly once each (amortized analysis).

- **Special but important case:** the intervals have integers as boundaries (sequence positions) in the range 1..t ⇒ sorting can be done in $O(t + n)$ using Bucket Sort ⇒ faster if $t = o(n \log n)$ (dense intervals)
Simple Approach to Gene Finding

- only predict protein-coding part of genes (easier)
Simple Approach to Gene Finding

- only predict protein-coding part of genes (easier)
- interpret gene structure as chain of CDS
Simple Approach to Gene Finding

- only predict protein-coding part of genes (easier)
- interpret gene structure as chain of CDS
- gene boundaries are implied by CDS boundaries (stop codon)
Simple Approach to Gene Finding

- only predict protein-coding part of genes (easier)
- interpret gene structure as chain of CDS
- gene boundaries are implied by CDS boundaries (stop codon)
- CDS candidate defined by sequence (integer) interval
 \[B_j = [\ell_j, r_j] \]
- score \(j \)-th CDS candidate:

 \[
 s_j = \text{score of signal at } \ell_j \quad \text{(e.g. ASS or start codon)} \\
 + \text{score of signal at } r_j \quad \text{(e.g. DSS or stop codon)} \\
 + \text{score of sequence content in } [\ell_j, r_j]
 \]
Simple Approach to Gene Finding

- only predict protein-coding part of genes (easier)
- interpret gene structure as chain of CDS
- gene boundaries are implied by CDS boundaries (stop codon)
- CDS candidate defined by sequence (integer) interval $B_j = [\ell_j, r_j)$

score j-th CDS candidate:

$$s_j = \text{score of signal at } \ell_j \ (\text{e.g. ASS or start codon}) + \text{score of signal at } r_j \ (\text{e.g. DSS or stop codon}) + \text{score of sequence content in } [\ell_j, r_j)$$

- use chaining algorithm to find “best” exon chain
Simple Approach to Gene Finding

Signal Score

A number s assigned to a sequence position p that is used to decide whether the signal is present at p.

Usually: $s = s(w)$, where w is a sequence window around p.

Aims:

1. The larger the score, the more likely is it that there is a true signal.
2. $s(w)$ is “small” for positions p without the signal.
Example Signal Score

Example (DSS position weight matrix)

\(p = \) candidate donor splice site position
\(w = \) seq window 2 pos upstream and 5 pos downstream of DSS

Have position specific scoring matrix for DSS

\[
m(i, b) \quad (i = 1, 2, \ldots, 7, b \in \text{A,C,G,T}),
\]

\[
m(i, A) + m(i, C) + m(i, G) + m(i, T) = 1
\]

Have “background” distribution of nucleotides \(q(b) \)

\[
q(A) + q(C) + q(G) + q(T) = 1
\]

Define log-odds score: \(s = \log \prod_{i=1}^{7} \frac{m(i, w_i)}{q(w_i)} \)
Example Content Score

Base composition is frame-dependent

<table>
<thead>
<tr>
<th></th>
<th>coding sequence</th>
<th>all f</th>
<th>noncoding sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>f = 0</td>
<td>f = 1</td>
<td>f = 2</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.248</td>
<td>0.291</td>
<td>0.146</td>
</tr>
<tr>
<td>C</td>
<td>0.264</td>
<td>0.243</td>
<td>0.351</td>
</tr>
<tr>
<td>G</td>
<td>0.321</td>
<td>0.201</td>
<td>0.312</td>
</tr>
<tr>
<td>T</td>
<td>0.166</td>
<td>0.265</td>
<td>0.190</td>
</tr>
</tbody>
</table>

nucleotide frequencies in human:
- Base composition is frame-dependent
 - Frame 0: A = 0.248, C = 0.264, G = 0.321, T = 0.166
 - Frame 1: A = 0.291, C = 0.243, G = 0.201, T = 0.265
 - Frame 2: A = 0.146, C = 0.351, G = 0.312, T = 0.190
 - All frames: A = 0.229, C = 0.286, G = 0.278, T = 0.207
Example Content Score

Example (frame-dependent Markov chain of order k)

Let w be the DNA word of length n to be scored as CDS. Let $f \in \{0, 1, 2\}$ be the frame of the first position of w.

$$P(w) := p_f(w_1, \ldots, w_k) \cdot \prod_{i=k+1}^{n} p_{f(i)}(w_i \mid w_{i-k}, \ldots, w_{i-1})$$

- p_f is a start probability for the first k bases

Here:
- $f(i) \in \{0, 1, 2\}$ such that $f(i) \equiv f - 1 + i \mod 3$ is the frame of the i-th position of w

Define $s(w) = \log(P(w)/Q(w))$, where $Q(w)$ is the probability of w in a “background” model (e.g. non-coding).

Remark: division by background \Rightarrow good exon candidates get positive score
Example

\[w = \text{ATTCTGC} \]
frame \(f = 2 \), i.e. with these codon breaks: A\(\parallel \)TTC\(\parallel \)TGC
\(k = 2 \)

\[
P(\text{ATTCTGC}) = p_2(\text{AT})p_1(\text{T} | \text{AT})p_2(\text{C} | \text{TT}) \\
p_0(\text{T} | \text{TC})p_1(\text{G} | \text{CT})p_2(\text{C} | \text{TG})
\]

- if \(k \geq 2 \) above content model can reflect codon usage
- typical: \(k = 4 \) or \(k = 5 \)
- probabilities \(p_r(x \mid y_1, \ldots, y_k) \) can be estimated on known coding sequences
Problems with Simple Approach

- reading frame consistency not enforced
Problems with Simple Approach

- reading frame consistency not enforced
- \Rightarrow output can be biologically “senseless”
Problems with Simple Approach

- reading frame consistency not enforced
- ⇒ output can be biologically “senseless”
- ⇒ less accurate when this info is ignored
Problems with Simple Approach

- reading frame consistency not enforced
- ⇒ output can be biologically “senseless”
- ⇒ less accurate when this info is ignored
- CDS candidates with negative score are never used
Problems with Simple Approach

- reading frame consistency not enforced
- ⇒ output can be biologically “senseless”
- ⇒ less accurate when this info is ignored
- CDS candidates with negative score are never used

Need extension to chaining algorithm to enforce consistency.
Consistent Chaining Problem

Definition

Let $\mathcal{B} = \{B_1, B_2, \ldots, B_n\}$ and s_1, \ldots, s_n be as above. In addition, let T be a finite set of types.
Consistent Chaining Problem

Definition

Let \(\mathcal{B} = \{ B_1, B_2, \ldots, B_n \} \) and \(s_1, \ldots, s_n \) be as above. In addition, let \(T \) be a finite set of types.

For every interval \(B_j \) let \(\text{pre}(j), \text{suc}(j) \in T \) be a **predecessor** and **successor** type of interval \(j \).
Consistent Chaining Problem

Definition

Let \(\mathcal{B} = \{B_1, B_2, \ldots, B_n\} \) and \(s_1, \ldots, s_n \) be as above. In addition, let \(T \) be a finite set of **types**.

For every interval \(B_j \) let \(\text{pre}(j), \text{suc}(j) \in T \) be a **predecessor** and **successor** type of interval \(j \).

A chain \(\Gamma = (B_{j_1}, B_{j_2}, \ldots, B_{j_d}) \) is **consistent** if

\[
\text{suc}(j) = \text{pre}(j + 1), \quad (j = 1, \ldots, n - 1).
\]
Consistent Chaining Problem

Definition

Let $\mathcal{B} = \{B_1, B_2, \ldots, B_n\}$ and s_1, \ldots, s_n be as above. In addition, let T be a finite set of types. For every interval B_j let $\text{pre}(j), \text{suc}(j) \in T$ be a predecessor and successor type of interval j. A chain $\Gamma = (B_{j_1}, B_{j_2}, \ldots, B_{j_d})$ is consistent if

$$\text{suc}(j) = \text{pre}(j + 1), \quad (j = 1, \ldots, n - 1).$$

Definition (Consistent Chaining Problem)

For a given set of scored, typed intervals \mathcal{B} find a consistent chain with maximal score.
Consistent Chaining Algorithm

Consistent Chaining Algorithm (without Backtracking)

1. \(P \leftarrow \text{sort} \{ \ell_1, r_1, \ell_2, r_2, \ldots, \ell_n, r_n \} \) increasingly
2. \(M_t \leftarrow 0 \) for all \(t \in T \) // initialization
3. \textbf{while} \(P \) not empty \textbf{do}
4. \(b \leftarrow \text{remove smallest element in} \ P \)
5. \textbf{for all} \(j \) such that \(r_j = b \) \textbf{do}
6. \(\text{if} \ S_j > M_{\text{suc}(j)} \) \textbf{then}
7. \(M_{\text{suc}(t)} \leftarrow S_j \)
8. \textbf{end if}
9. \textbf{end for}
10. \textbf{for all} \(j \) such that \(\ell_j = b \) \textbf{do}
11. \(S_j \leftarrow s_j + M_{\text{pre}(j)} \)
12. \textbf{end for}
13. \textbf{end while}
14. output max \(M_t \) as score of best chain
Consistent Chaining Algorithm

- algorithm maintains for each t the score M_t of the best chain in which the last interval has successor type t and ends at or before b
Consistent Chaining Algorithm

- algorithm maintains for each t the score M_t of the best chain in which the last interval has successor type t and ends at or before b
- backtracking very similar as in normal chaining algorithm
Consistent Chaining Algorithm

- algorithm maintains for each t the score M_t of the best chain in which the last interval has successor type t and ends at or before b
- backtracking very similar as in normal chaining algorithm
- running time still $O(n \log n)$ if T is considered a constant
Consistent Chaining Algorithm

- algorithm maintains for each t the score M_t of the best chain in which the last interval has successor type t and ends at or before b
- backtracking very similar as in normal chaining algorithm
- running time still $O(n \log n)$ if T is considered a constant
- best chain can now include intervals with negative score
Exon Chaining/Assembly

Example (exon candidates in a DNA of length 2000)

- color at left and right end (red, green, blue)
- specify exon phase at left and right end
- arrow tips and heads denote start and stop codons

exon candidates of the program GENEID
Exon Chaining/Assembly

Can use Consistent Chaining Algorithm to assemble exon candidates to genes.

exon candidates = intervals

Let T contain the following elements describing a transition type between exons.

- **boundary**
 - f_0^+: codon on + strand is split right at boundary
 - f_1^+: codon on + strand is split after first base
 - f_2^+: codon on + strand is split after second base
 - f_0^-: codon on - strand is split right at boundary
 - f_1^-: codon on - strand is split after first base
 - f_2^-: codon on - strand is split after second base

Define predecessor and successor types of exon candidates so that consistency of chain implies biological consistency of exon sequence.
Consistent Exon Chain

Example

\[
\text{suc}(1) = f_{0^+} = \text{pre}(2) \quad \text{suc}(3) = \text{boundary} = \text{pre}(4) \quad \text{suc}(2) = f_{2^+} = \text{pre}(3) \quad \text{suc}(4) = f_{2^-} = \text{pre}(5)
\]

\[
\begin{array}{cccccc}
\text{ATG} & \cdots & *** & \cdots & ** & *** \cdots \text{TAG} \\
B_1 & B_2 & B_3 & B_4 & B_5
\end{array}
\]
Issues of the Exon Chaining Approach

Problematic:

- **introns** are not modelled at all:
 - no length distribution considered
 - no difference to intergenic region
Issues of the Exon Chaining Approach

Problematic:

- **introns** are not modelled at all:
 - no length distribution considered
 - no difference to intergenic region
- **UTRs**: How can one accommodate for exons like these?

| UTR | CDS |
Issues of the Exon Chaining Approach

<table>
<thead>
<tr>
<th>Problematic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>introns are not modelled at all:</td>
</tr>
<tr>
<td>• no length distribution considered</td>
</tr>
<tr>
<td>• no difference to intergenic region</td>
</tr>
<tr>
<td>UTRs: How can one accommodate for exons like these?</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>• dividing by background probability implicitly assumes that there are only two alternatives, e.g. exon ↔ noncoding but there are more than two alternatives for a region</td>
</tr>
</tbody>
</table>
1. **Introduction to Gene-Finding-Problem**
 What Do Genes Look Like?
 Statistical Features of Genes

2. **Gene Finding Through Exon-Chaining**
 The One-Dimensional Chaining Problem
 Exon-Chaining Algorithm

3. **Gene Finding with HMMs**
 Generalized HMMs
 Model Design
 Training

4. **Pair Hidden Markov Models**
 Definitions
 Application: Comparative Gene Prediction
A HMM is a probabilistic model of a word $y = y_1 y_2 \cdots y_n$ ("emission") over some alphabet Σ and of a state sequence $x = (x_1, x_2, \cdots, x_n)$ over some discrete set of states Q.
Reminder: Hidden Markov Model

A Hidden Markov Model (HMM) is a probabilistic model of a word $y = y_1 y_2 \cdots y_n$ ("emission") over some alphabet Σ and of a state sequence $x = (x_1, x_2, \cdots, x_n)$ over some discrete set of states Q.

The joint distribution of x and y is of the form

$$P(x, y) = \prod_{i=1}^{n} p(x_i|x_{i-1}) \cdot p(y_i|x_i),$$

where the $p(x_i|x_{i-1})$ are the transition probabilities of a Markov chain and the $p(y_i|x_i)$ are called emission probabilities.

(x_0 is a start state to simplify notation)
Reminder: Hidden Markov Model

Algorithms

- In applications, normally y is observed and x is unobserved/hidden.
Reminder: Hidden Markov Model

Algorithms

- In applications, normally y is observed and x is unobserved/hidden.
- The Viterbi algorithm computes a most likely state sequence $\hat{x} \in \arg \max_x P(x|y)$ in time $O(n)$.

Reminder: Hidden Markov Model

In applications, normally y is observed and x is unobserved/hidden.

The Viterbi algorithm computes a most likely state sequence $\hat{x} \in \arg \max_x P(x|y)$ in time $O(n)$.
Reminder: Hidden Markov Model

Algorithms

- In applications, normally y is observed and x is unobserved/hidden.
- The **Viterbi algorithm** computes a most likely state sequence $\hat{x} \in \arg \max_x P(x|y)$ in time $O(n)$.
- The **Forward algorithm** can be used to compute $P(x, y)$ in time $O(n)$.

Reminder: Hidden Markov Model

Algorithms

- In applications, normally y is observed and x is unobserved/hidden.
- The Viterbi algorithm computes a most likely state sequence $\hat{x} \in \arg\max_x P(x|y)$ in time $O(n)$.
- The Forward algorithm can be used to compute $P(x, y)$ in time $O(n)$.
- The Forward and Backward algorithms can be used to compute posterior probabilities $P(x_i = q|y)$ in time $O(n)$.
Why GHMMs?

- A HMM is a special case of a GHMM.
Reminder: Generalized Hidden Markov Model

Why GHMMs?

- A HMM is a special case of a GHMM.
- In gene finding and for alignment tasks GHMMs are often used because
Reminder: Generalized Hidden Markov Model

Why GHMMs?

• A HMM is a special case of a GHMM.
• In gene finding and for alignment tasks GHMMs are often used because they allow a detailed modelling of the length distribution of exons and other biological intervals.
Reminder: Generalized Hidden Markov Model

Why GHMMs?

- A HMM is a special case of a GHMM.
- In gene finding and for alignment tasks, GHMMs are often used because
 1. they allow a detailed modelling of the length distribution of exons and other biological intervals
 2. they accommodate for “silent” or “delete” states required to model alignment gaps
Definition: Generalized Hidden Markov Model

Definition (Parse)

Let \(y = y_1 y_2 \cdots y_n, \Sigma, Q \) be as before.
A parse \(x \) of \(y \) is a sequence

\[
x = ((q_1, v_1), (q_2, v_2), \ldots, (q_t, v_t))
\]

with \(q_i \in Q, v_i \in \mathbb{N}_0 \) such that \(v_1 \leq v_2 \leq \cdots \leq v_t = n \).
Definition: Generalized Hidden Markov Model

Definition (Parse)

Let \(y = y_1 y_2 \cdots y_n, \Sigma, Q \) be as before.
A parse \(x \) of \(y \) is a sequence

\[
x = ((q_1, v_1), (q_2, v_2), \ldots, (q_t, v_t)),
\]

with \(q_i \in Q, v_i \in \mathbb{N}_0 \) such that \(v_1 \leq v_2 \leq \cdots \leq v_t = n \).
Definition: Generalized Hidden Markov Model

Definition (Parse)

Let $y = y_1 y_2 \cdots y_n$, Σ, Q be as before. A parse x of y is a sequence

$$x = ((q_1, v_1), (q_2, v_2), \ldots, (q_t, v_t)),$$

with $q_i \in Q$, $v_i \in \mathbb{N}_0$ such that $v_1 \leq v_2 \leq \cdots \leq v_t = n$.

<table>
<thead>
<tr>
<th>v_0</th>
<th>q_1</th>
<th>v_1</th>
<th>q_2</th>
<th>v_2</th>
<th>v_{i-1}</th>
<th>q_i</th>
<th>v_i</th>
<th>v_{t-1}</th>
<th>q_t</th>
<th>v_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>\cdots</td>
<td>y_i</td>
<td>\cdots</td>
<td>$y(v_{i-1}, v_i)$</td>
<td>\cdots</td>
<td>y_n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- observe that y decomposes via x into

$$y = y(v_0, v_1) y(v_1, v_2) \cdots y(v_{n-1}, v_n) \quad (v_0 := 0)$$
Definition: Generalized Hidden Markov Model

Definition (Parse)

Let $y = y_1 y_2 \cdots y_n$, Σ, Q be as before.
A parse x of y is a sequence

$$x = ((q_1, v_1), (q_2, v_2), \ldots, (q_t, v_t)),$$

with $q_i \in Q$, $v_i \in \mathbb{N}_0$ such that $v_1 \leq v_2 \leq \cdots \leq v_t = n$.

- observe that y decomposes via x into
 $$y = y(v_0, v_1) y(v_1, v_2) \cdots y(v_{n-1}, v_n) \quad (v_0 := 0)$$
- we say that state “q_i ends at v_i”
Definition: Generalized Hidden Markov Model

Definition (Parse)

Let \(y = y_1 y_2 \cdots y_n \), \(\Sigma \), \(Q \) be as before. A parse \(x \) of \(y \) is a sequence

\[
x = ((q_1, v_1), (q_2, v_2), \ldots, (q_t, v_t)),
\]

with \(q_i \in Q \), \(v_i \in \mathbb{N}_0 \) such that \(v_1 \leq v_2 \leq \cdots \leq v_t = n \).

- observe that \(y \) decomposes via \(x \) into
 \[
y = y(v_0, v_1) y(v_1, v_2) \cdots y(v_{n-1}, v_n) \quad (v_0 := 0)
\]
- we say that state “\(q_i \) ends at \(v_i \)”
- we call \(d_i := v_i - v_{i-1} \) the length of the \(i \)-th emission
Definition: Generalized Hidden Markov Model

Definition (GHMM)

A GHMM is a joint distribution of a word \(y \) and a parse \(x \) of \(y \) of the form

\[
P(x, y) = \prod_{i=1}^{t} P_{\text{trans}}(q_i | q_{i-1}) \cdot P_{\text{emi}}(y(v_{i-1}, v_i) | q_i),
\]

where \(P_{\text{trans}}(\cdot | q) \) is a probability distribution (transition probabilities) over \(Q \) for all \(q \in Q \) and where \(P_{\text{emi}}(\cdot | q) \) is a probability distribution (emission probabilities) over \(\Sigma^* \) for all \(q \in Q \).

\(q_0 \) is a special start state

\[
\Sigma^* = \{ \text{all strings with letters in } \Sigma \} \text{ (includes empty string)}
\]

Remark: We explicitly allow \(d_i = 0 \). A state \(q \) with \(P_{\text{emi}}(\epsilon | q) = 1 \) is called a silent state (\(\epsilon \) is the empty string of length 0).
When is a GHMM called a HMM?

- A HMM is a GHMM in which $d_i \equiv 1$ for all i, i.e. all emissions are a single character. In that special case the parse x can be identified with the state sequence, which has the same length as y.

- Sometimes in the literature a GHMM, in which $d_i \in \{0, 1\}$, is still called a HMM only with some special modifications to the algorithms. Example: “delete” state in profile HMMs.
Algorithms for GHMM

Algorithms

1. Usually, the word y is observed. Now: A **concatenation** of the emissions, not the sequence of emissions. Contrast to HMM: The emissions cannot be inferred from y alone.
Algorithms for GHMM

Algorithms

1. Usually, the word y is observed. Now: A *concatenation* of the emissions, not the sequence of emissions. Contrast to HMM: The emissions cannot be inferred from y alone.

2. x is unobserved, *neither the states nor their boundaries* are known.
Algorithms for GHMM

Algorithms

1. Usually, the word y is observed. Now: A concatenation of the emissions, not the sequence of emissions. Contrast to HMM: The emissions cannot be inferred from y alone.

2. x is unobserved, neither the states nor their boundaries are known.

3. Analogous Viterbi, Forward and Backward algorithms exist that all run in $O(n^2)$. Important special case: they run in $O(n)$ if all d_i are bounded from above by a constant.
Algorithms for GHMM

Algorithms

1. Usually, the word y is observed. Now: A concatenation of the emissions, not the sequence of emissions. Contrast to HMM: The emissions cannot be inferred from y alone.

2. x is unobserved, neither the states nor their boundaries are known.

3. Analogous Viterbi, Forward and Backward algorithms exists that all run in $O(n^2)$. Important special case: they run in $O(n)$ if all d_i are bounded from above by a constant.

4. A prerequisite for points 3 above is that no loops of states with just empty-word-emissions are possible. We will ensure that by the design of the model topology.
A Simple GHMM for Gene Finding: Model Topology

Model for (multiple) eukaryotic genes on forward strand:

(Arrows denote the transitions with non-zero transition probability.)
What (Most) Eukaryotic Species Have in Common?

In Common:

- same genetic code, including start and stop codons
What (Most) Eukaryotic Species Have in Common?

In Common:

- same genetic code, including start and stop codons
- genes can have introns, may have many

In Common:

• same genetic code, including start and stop codons
• genes can have introns, may have many
What (Most) Eukaryotic Species Have in Common?

In Common:

- same genetic code, including start and stop codons
- genes can have introns, may have many
- genes rarely overlap in sequence
What (Most) Eukaryotic Species Have in Common?

In Common:

- same genetic code, including start and stop codons
- genes can have introns, may have many
- genes rarely overlap in sequence
- introns start almost always with GT, end with AG (some introns GC/AG)
What (Most) Eukaryotic Species Have in Common?

In Common:

- same genetic code, including start and stop codons
- genes can have introns, may have many
- genes rarely overlap in sequence
- introns start almost always with GT, end with AG (some introns GC/AG)
- more non-coding sequence than coding sequence
How Species-Specific Must Gene Finding Models Be?

Differences:

- distribution at signals, e.g. branch point region

 top: human / bottom: fly
How Species-Specific Must Gene Finding Models Be?

Differences:

- distribution at signals, e.g. branch point region
- GC content highly variable
How Species-Specific Must Gene Finding Models Be?

Differences:

- distribution at signals, e.g. branch point region
- GC content highly variable
- number and length distribution of introns

top: human / **bottom:** *C. elegans*
How Species-Specific Must Gene Finding Models Be?

Differences:

- distribution at signals, e.g. branch point region
- GC content highly variable
- number and length distribution of introns
- length distribution of UTRs
How Species-Specific Must Gene Finding Models Be?

Differences:

- distribution at signals, e.g. branch point region
- GC content highly variable
- number and length distribution of introns
- length distribution of UTRs
- gene density
Training: Estimate Species-Specific Parameters

“Training Set”

- input: set of annotated sequences

\[(x^{(k)}, y^{(k)})_{k=1,\ldots,N},\]

such that the parse \(x^{(k)}\) represents the gene structure of DNA sequence \(y^{(k)}\).

- frequently a few hundred genes constructed from cDNA alignments
1. **Introduction to Gene-Finding-Problem**
 What Do Genes Look Like?
 Statistical Features of Genes

2. **Gene Finding Through Exon-Chaining**
 The One-Dimensional Chaining Problem
 Exon-Chaining Algorithm

3. **Gene Finding with HMMs**
 Generalized HMMs
 Model Design
 Training

4. **Pair Hidden Markov Models**
 Definitions
 Application: Comparative Gene Prediction
Pair HMM versus standard HMM

Pair HMM

- same concept of hidden states
Pair HMM versus standard HMM

- same concept of hidden states
- two observed sequences y and z instead of just one
Pair HMM versus standard HMM

Pair HMM

- same concept of hidden states
- two observed sequences y and z instead of just one
- an association between character pairs y_i and z_j is usually sought but a priori not known
Pair HMM versus standard HMM

Pair HMM

- same concept of hidden states
- two observed sequences y and z instead of just one
- an association between character pairs y_i and z_j is usually sought but a priori not known
- typical Bioinformatics applications: alignments, comparative gene finding
Biparse

Definition (Biparse)

Let Q be a finite set (of states).

Let $y = y_1 y_2 \cdots y_n$ and $z = z_1 z_2 \cdots z_m$ be two sequences over an alphabet Σ of lengths n and m, respectively.

A biparse x of y and z is a sequence

$$x = ((q_1, v_1, w_1), (q_2, v_2, w_2), \ldots, (q_t, v_t, w_t)),$$

with $q_i \in Q$, $v_i, w_i \in \mathbb{N}_0$ such that $v_1 \leq v_2 \leq \cdots \leq v_t = n$ and $w_1 \leq w_2 \leq \cdots \leq w_t = m$.
Definition (Biparse)

Let Q be a finite set (of states).

Let $y = y_1 y_2 \cdots y_n$ and $z = z_1 z_2 \cdots z_m$ be two sequences over an alphabet Σ of lengths n and m, respectively.

A **biparse** x of y and z is a sequence

$$x = (((q_1, v_1, w_1), (q_2, v_2, w_2), \ldots , (q_t, v_t, w_t)),$$

with $q_i \in Q$, $v_i, w_i \in \mathbb{N}_0$ such that $v_1 \leq v_2 \leq \cdots \leq v_t = n$ and $w_1 \leq w_2 \leq \cdots \leq w_t = m$.

- a biparse segments 2 sequences into the same number of segments
- each segment pair $y(v_{i-1}, v_i], z(w_{i-1}, w_i]$ corresponds a single state q_i
Definition: Pair HMM

A Pair HMM is a joint distribution of two words y and z and a biparse x of them of the form

$$P(x, y, z) = \prod_{i=1}^{t} P_{\text{trans}}(q_i | q_{i-1}) \cdot P_{\text{emi}}(y(v_{i-1}, v_i), z(w_{i-1}, w_i) | q_i),$$

where $P_{\text{trans}}(\cdot | q)$ is a probability distribution (transition probs) over Q for all $q \in Q$ and where $P_{\text{emi}}(\cdot | q)$ is a probability distr. (emission probs) over $\Sigma^* \times \Sigma^*$ for all $q \in Q$.

$q_0 \in Q$ is a special start state

- Analogous to GHMM, just 2 “simultaneous” emissions instead of 1.
- In practice, P_{emi} often is symmetric: $P_{\text{emi}}(a, b | q) = P_{\text{emi}}(b, a | q)$ (fewer parameters to train)
Viterbi Algorithm for Pair HMMs

Definition (Viterbi Variables)

For \(q \in Q, 0 \leq \ell \leq n, 0 \leq r \leq m \) define the Viterbi variable

\[
\gamma_{q,\ell,r} := \max_x \text{biparse that ends in } (q, \ell, r) \]

\[
P(x, y(0, \ell], z(0, r]).
\]
Viterbi Algorithm for Pair HMMs

Definition (Viterbi Variables)

For \(q \in Q, 0 \leq \ell \leq n, 0 \leq r \leq m \) define the Viterbi variable

\[
\gamma_{q,\ell,r} := \max_{x \text{ biparse}} P(x, y(0, \ell], z(0, r]).
\]

Interpretation

\(\gamma_{q,\ell,r} \) is the probability of the most likely parse of \(y \) up to \(\ell \) and of \(z \) up to \(r \) that ends in state \(q \).
Viterbi Recursion

The Viterbi Recursion is given by:

\[
\gamma_{q, \ell, r} = \max_{q', \ell', r'} \gamma_{q', \ell', r'} \cdot P_{\text{trans}}(q|q') \cdot P_{\text{emi}}(y(\ell', \ell], z(r', r]|q)
\]

Here, for convenience we define:

\[
\gamma_{q_0, 0, 0} = 1, \quad \gamma_{q, 0, 0} = 0 \quad \forall q \neq q_0.
\]
Viterbi Recursion

\[
\gamma_{q, \ell, r} = \max_{q' \in Q, 0 \leq \ell' \leq \ell, 0 \leq r' \leq r} \gamma_{q', \ell', r'} \cdot P_{\text{trans}}(q|q') \cdot P_{\text{emi}}(y(\ell', \ell], z(r', r]|q)
\]

Here, for convenience we define

\[
\gamma_{q_0, 0, 0} = 1, \quad \gamma_{q, 0, 0} = 0 \quad \forall q \neq q_0.
\]

Assumption

Never the empty string is emitted simultaneously in both sequences:

\[
P_{\text{emi}}(\epsilon, \epsilon|q) = 0 \quad \forall q \in Q
\]
Viterbi Recursion

\[
\gamma_{q,\ell,r} = \max_{q' \in Q} \gamma_{q',\ell',r'} P_{\text{trans}}(q|q') P_{\text{emi}}(y(\ell', \ell], z(r', r]|q)
\]

Here, for convenience we define

\[
\gamma_{q_0,0,0} = 1, \quad \gamma_{q,0,0} = 0 \quad \forall q \neq q_0.
\]

Assumption

Never the empty string is emitted simultaneously in both sequences:

\[
P_{\text{emi}}(\epsilon, \epsilon|q) = 0 \quad \forall q \in Q
\]

- is anyway the case in our applications
- is sufficient condition that the Viterbi recursion can be iteratively computed
Viterbi Algorithm for Pair HMMs

1: initialize $\gamma_{q_0,0,0} \leftarrow 1$, $\gamma_{q,0,0} \leftarrow 0 \quad \forall q \in Q \setminus \{q_0\}$

2: for $\ell = 0$ to n do

3: for $r = 0$ to m do

4: for all $q \in Q$ do

5: if $\ell \neq 0$ or $r \neq 0$ then

6: update $\gamma_{q,\ell,r}$ according to Viterbi recursion

7: $\text{pre}(q,\ell,r) \leftarrow (q',\ell',r')$ // arg max from Viterbi recursion

8: end if

9: end for

10: end for

11: end for

12: // backtracking starts

13: $x \leftarrow ()$

14: $q \leftarrow \arg \max_{q' \in Q} \gamma_{q',n,m}, \quad \ell \leftarrow n, \quad r \leftarrow m$

15: while $\ell > 0$ or $r > 0$ do

16: add (q,ℓ,r) at front of x

17: $(q,\ell,r) = \text{pre}(q,\ell,r)$

18: end while

19: output x as a best biparse of y and z
Running Time

- in general:

\[O(n^2 m^2) \]

- if emissions are bounded by \(d \):

\[P_{emi}(w, w' | q) = 0, \quad \forall w, w' \in \Sigma^*: |w| > d \text{ or } |w'| > d, \quad \forall q \in Q \]

we can shortcut recursion:

\[\gamma_q, \ell, r = \max_{q' \in Q} \max \left\{ 0, \ell - d \right\} \leq \ell' \leq \ell \max \left\{ 0, \ell - d \right\} \leq r' \leq r \]

\[P_{trans}(q | q') P_{emi}(y(\ell', \ell], z(\ell', \ell]| q) \]

- then running time is \(O(d^2 nm) \)

- very important special case \(d = 1 \): running time = \(O(nm) \)

- further heuristics to reduce running time possible:

compute Viterbi recursion only for subset of \((\ell, r)\) \(\in\) \((0, n] \times (0, m] \),

assume it vanishes elsewhere
Running Time

- in general: $O(n^2 m^2)$
- if emissions are bounded by d: $P_{emi}(w, w'|q) = 0$, $\forall w, w' \in \Sigma^*$: $|w| > d$ or $|w'| > d$, $\forall q \in Q$
 we can shortcut recursion:

$$
\gamma_{q,\ell,r} = \max_{q' \in Q} \gamma_{q',\ell',r'} P_{trans}(q|q') P_{emi}(y(\ell', \ell], z(\ell', \ell]|q)
$$

then running time is

$$
\max\{0, \ell - d\} \leq \ell' \leq \ell \\
\max\{0, \ell - d\} \leq r' \leq r
$$
Running Time

- in general: $O(n^2m^2)$
- if emissions are bounded by d:

 $P_{emi}(w, w'|q) = 0$, \quad $\forall w, w' \in \Sigma^*$: $|w| > d$ or $|w'| > d$, \quad $\forall q \in Q$

 we can shortcut recursion:

 $$
 \gamma_{q, \ell, r} = \max_{q' \in Q} \gamma_{q', \ell', r'} P_{trans}(q|q') P_{emi}(y(\ell', \ell], z(\ell', \ell]|q)
 \max\{0, \ell - d\} \leq \ell' \leq \ell \\
 \max\{0, \ell - d\} \leq r' \leq r
 $$

 then running time is $O(d^2nm)$
Running Time

- in general: $O(n^2 m^2)$
- if emissions are bounded by d:

 $P_{emi}(w, w'|q) = 0, \ \forall w, w' \in \Sigma^*: |w| > d \text{ or } |w'| > d, \forall q \in Q$

 we can shortcut recursion:

 $$\gamma_{q,\ell,r} = \max_{q' \in Q} \gamma_{q',\ell',r'} P_{\text{trans}}(q|q') P_{\text{emi}}(y(\ell',\ell], z(\ell',\ell]|q)$$

 $$\max\{0, \ell - d\} \leq \ell' \leq \ell$$
 $$\max\{0, \ell - d\} \leq r' \leq r$$

 then running time is $O(d^2 nm)$
- very important special case $d = 1$: running time = $O(nm)$
Running Time

- in general: $O(n^2 m^2)$
- if emissions are bounded by d:
 $P_{emi}(w, w'|q) = 0$, $\forall w, w' \in \Sigma^* : |w| > d$ or $|w'| > d$, $\forall q \in Q$
 we can shortcut recursion:

 $\gamma_{q, \ell, r} = \max_{q' \in Q} \gamma_{q', \ell', r'} P_{trans}(q|q') P_{emi}(y(\ell', \ell], z(\ell', \ell]|q)$

 $\max\{0, \ell - d\} \leq \ell' \leq \ell$
 $\max\{0, \ell - d\} \leq r' \leq r$

 then running time is $O(d^2 nm)$
- very important special case $d = 1$: running time = $O(nm)$
- further heuristics to reduce running time possible:
 compute Viterbi recursion only for subset of $(\ell, r) \in (0, n] \times (0, m]$, assume it vanishes elsewhere
Conservation of Gene Structure and Sequence

Observation

Protein sequences and **rough structure** of genes are often **conserved** between species that are tens of millions of years separated.

Example (Human-Mouse: 75 million years)

- 95% of orthologous gene pairs have same number of exons in human and mouse
Conservation of Gene Structure and Sequence

Observation

Protein sequences and rough structure of genes are often conserved between species that are tens of millions of years separated.

Example (Human-Mouse: 75 million years)

- 95% of orthologous gene pairs have same number of exons in human and mouse
- coding sequence to ≈ 85% identical
Conservation of Gene Structure and Sequence

Observation

Protein sequences and rough structure of genes are often conserved between species that are tens of millions of years separated.

Example (Human-Mouse: 75 million years)

- 95% of orthologous gene pairs have same number of exons in human and mouse
- coding sequence to \(\approx 85\%\) identical

<table>
<thead>
<tr>
<th>Human</th>
<th>Mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr21:</td>
<td>chr21:</td>
</tr>
<tr>
<td>33035890</td>
<td>33035890</td>
</tr>
<tr>
<td>33035900</td>
<td>33035900</td>
</tr>
<tr>
<td>33035910</td>
<td>33035910</td>
</tr>
<tr>
<td>33035920</td>
<td>33035920</td>
</tr>
<tr>
<td>33035930</td>
<td>33035930</td>
</tr>
<tr>
<td>33035940</td>
<td>33035940</td>
</tr>
<tr>
<td>33035950</td>
<td>33035950</td>
</tr>
<tr>
<td>33035960</td>
<td>33035960</td>
</tr>
<tr>
<td>33035970</td>
<td>33035970</td>
</tr>
<tr>
<td>33035980</td>
<td>33035980</td>
</tr>
<tr>
<td>33035990</td>
<td>33035990</td>
</tr>
</tbody>
</table>

- noncoding sequence to \(\approx 35\%\) identical

<table>
<thead>
<tr>
<th>Human</th>
<th>Mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr21:</td>
<td>chr21:</td>
</tr>
<tr>
<td>33035890</td>
<td>33035890</td>
</tr>
<tr>
<td>33035900</td>
<td>33035900</td>
</tr>
<tr>
<td>33035910</td>
<td>33035910</td>
</tr>
<tr>
<td>33035920</td>
<td>33035920</td>
</tr>
<tr>
<td>33035930</td>
<td>33035930</td>
</tr>
<tr>
<td>33035940</td>
<td>33035940</td>
</tr>
<tr>
<td>33035950</td>
<td>33035950</td>
</tr>
<tr>
<td>33035960</td>
<td>33035960</td>
</tr>
<tr>
<td>33035970</td>
<td>33035970</td>
</tr>
<tr>
<td>33035980</td>
<td>33035980</td>
</tr>
<tr>
<td>33035990</td>
<td>33035990</td>
</tr>
</tbody>
</table>
A Simple Pair HMM for Eukaryotic Gene Finding

- assume 1-to-1 correspondence between exons
- all states emit 2 sequences
- \(\Diamond\)-shaped states emit fixed-length and equal-length seqs
- splice site and “Kodon” states accommodate for conservation between the two species