

Introduction

Given a meromorphic linear differential system on the Riemann sphere,

$$\frac{dX}{dz} = A(z)X \text{ with } A(z) \in \mathcal{M}_n\left(\mathbb{C}(z)\right),\tag{1}$$

the nature of a singularity of A can be tackled by the study of lattices in a connection attached to the differential system. We use the geometric framework of the Bruhat-Tits building of SL(K), where $K = \mathbb{C}((z))$, and show that this can be performed by computations on the tropical linear space L_p attached to the valuated matroid *p* corresponding to a given *membrane* in the Bruhat-Tits building.

Meromorphic connections

A meromorphic connection is a map $\nabla : V \simeq K^n \longrightarrow \Omega(V) = V \otimes_K \Omega^1_{\mathbb{C}}(K)$ which is \mathbb{C} -linear and satisfies the Leibniz rule

$$\nabla(fv) = v \otimes df + f \nabla v \text{ for } f \in K \text{ and } v \in V.$$

The matrix $Mat(\nabla, (e))$ is given by $\nabla e_j = -\sum_{i=1}^n e_i \otimes \Omega_{ij}$ for a basis (e). A basis change $P \in GL_n(K)$ gauge-transforms the matrix of ∇ by

$$\Omega_{[P]} = P^{-1}\Omega P - P^{-1}dP.$$
(2)

Contracting with $z^k \frac{d}{dz}$ yields a differential operator ∇_k , and system (1) is the expression of $\nabla_0(v) = 0$ in the basis (e).

A *lattice* Λ in V is a free sub- \mathcal{O} -module of rank n, that is a module of the form

$$\Lambda = \bigoplus_{i=1}^{n} \mathcal{O}e_i \text{ for some basis } (e) \text{ of } V.$$

The *Poincaré rank of* ∇ *on the lattice* Λ is defined as the integer

$$\mathfrak{p}_{\Lambda}(\nabla) = -v_{\Lambda}(\Lambda + \nabla_1(\Lambda)) = \min\{k \in \mathbb{N} \mid \nabla_{k+1}(\Lambda) \subset \Lambda\} = \max_{i,j}(-v(\Omega_{ij}), 0).$$
(3)

The *true Poincaré rank* $m(\nabla) = \min_{\Lambda} \mathfrak{p}_{\Lambda}(\nabla)$ characterises the kind of solutions around the singularity of (1)

- $m(\nabla) = 0$, regular : $Y = U(z)z^L$ with U meromorphic and $L \in M_n(\mathbb{C})$,
- $m(\nabla) > 0$, *irregular* : Y asymptotic to $\hat{F}(z)z^L e^Q$, with \hat{F} meromorphic formal, $Q = \text{diag}(q_1(z^{1/k}), \dots, q_n(z^{1/k}))$ with $q_i \in \frac{1}{z}\mathbb{C}[\frac{1}{z}]$.

Another important invariant is the Katz rank $\kappa(\nabla) = \frac{1}{k} \max_i (-\deg q_i)$.

Example: $A = \begin{pmatrix} z^{-1} & z^{-N} \\ 0 & z^{-1} \end{pmatrix}$ has Poincaré rank $\mathfrak{p} = N - 1$ but is regular.

Gérard-Levelt's saturated lattices

For $k \ge 1$, Gérard and Levelt define the lattices

$$F_k^{\ell}(\Lambda) = \Lambda + \nabla_k \Lambda + \dots + \nabla_k^{\ell} \Lambda.$$

Theorem 1 (Gérard, Levelt) *The true Poincaré rank* $m(\nabla)$ *of* ∇ *is*

 $m(\nabla) = \min\{k \in \mathbb{N} \mid F_k^{n-1}(\Lambda) \text{ has Poincaré rank } \leq k\}$ for any lattice $\Lambda \subset V$.

Finding the true Poincaré rank is finding the largest lattice whose Poincaré rank matches its index in the following sequence

 $\Lambda \subset F_{p-1}^{n-1}(\Lambda) \subset \cdots \subset F_0^{n-1}(\Lambda)$

A membrane M and a basis (e) of V determine a valuated matroid

(4)

the same lattice Λ (up to homothety) if and only if $\pi_{L_n}(u) \equiv \pi_{L_n}(u')$ modulo tropical scalar multiplication. There are explicit formulæ for this projection (Blue and Red rules – Ardila, Joswig, Sturmfels and Yu): if the projected points are computed by these rules, then we even have

Gérard-Levelt Membranes

Eduardo Corel

University of Göttingen

The affine building of SL(V)

The affine building B_n attached to SL(V) is the *flag simplicial complex* of the graph whose

• vertices are the homothety classes of lattices in V

• edges connect vertices L and L' for which $\exists \Lambda \in L, \exists M \in L'$ such that $z\Lambda \subset M \subset \Lambda.$

Let $M = \{d_1, \ldots, d_m\}$ be lines such that $d_1 + \cdots + d_m = V$. The subcomplex

 $[M] = \{\Lambda = \ell_1 + \dots + \ell_m \mid \ell_i \text{ is a lattice in } d_i\}$

is called by Keel and Tevelev the *membrane* spanned by M.

For a choice $\mathcal{A} = (v_1, \ldots, v_m)$ of non-zero vectors in the lines d_i , any lattice Λ in the membrane [M] for $M = \{d_1, \ldots, d_m\}$ can be written $\Lambda_u = \sum_{i=1}^m \mathcal{O}z^{-u_i}v_i$ for a lattice point $u \in \mathbb{Z}^m$.

Tropical convexity and lattices

Membranes spanned by m lines in the Bruhat-Tits building have a faithful representation as tropical linear spaces in *m*-dimensional space. Let $(\mathbb{T} = \mathbb{R} \cup \{\infty\}, \oplus = \min, \odot)$ be the tropical semialgebra and consider the projective tropical spaces

 $\mathbb{T}\mathbb{A}^{m-1} = \mathbb{R}^m / \mathbb{R}(1, \dots, 1)$ and $\mathbb{T}\mathbb{P}^{m-1} = \mathbb{T}^m \setminus \{(\infty, \dots, \infty)\} / \mathbb{R}(1, \dots, 1).$

$$p: [m]^n \longrightarrow \mathbb{R} \cup \{\infty\}$$
$$\omega \longmapsto v(\det_{(e)} M_{\omega})$$

where $M_{\omega} = (v_{\omega_1}, \ldots, v_{\omega_n})$ is the subfamily of vectors of M indexed by ω . A *cocircuit* of the matroid p is a vector defined for some $\sigma \in {[m] \choose n-1}$ by

 $p(\sigma*) = (p(\sigma \cup \{1\}), \dots, p(\sigma \cup \{m\})) \in \mathbb{T}^m$

Theorem 2 (Yu, Yuster) The tropical linear space $L_p \subset \mathbb{TP}^{m-1}$ associated with this valuated matroid is the tropical convex hull of the cocircuits of p.

Theorem 3 (Keel, Tevelev) The nearest point projection map π_{L_p} : $\mathbb{TP}^{m-1} \longrightarrow L_p$ be induces a bijection Ψ_M between [M] and L_p

$$\Psi_M(\Lambda_u) = \pi_{L_p}(u_1, \ldots, u_m).$$

In particular, $M_u = (z^{-u_1}v_1, ..., z^{-u_m}v_m)$ and $M_{u'} = (z^{-u'_1}v_1, ..., z^{-u'_m}v_m)$ span

$$\Lambda_u = \Lambda_{u'} \iff \pi_{L_p}(u) = \pi_{L_p}(u').$$

$$\ell_k^\ell = (\underbrace{0, \dots}_{n \text{ tim}})$$

Definition 1 $\mathcal{M}_{GL}^{\Lambda} = [M_n]$ *is called the Gérard-Levelt membrane attached to* Λ *.* If $Mat(\nabla_1, (e)) = A$, in this basis \mathcal{M}_{Λ} is described by the $n \times n(n+1)$ matrix

$$\mathbf{M} = (I_n$$

 $u_k^n = (0, \dots, -3)$ $u_k^{n-1} = (0, \ldots, -$

One gets π_0

The Katz rank is usually computed after ramifying the variable $\zeta = z^{1/p}$ to a suitable order. Here $\kappa(\nabla) = \frac{3}{2}$, so the formula in corollary 1 generalizes to \mathbb{R}^+ in this case.

- computations?

(5)

The Gérard-Levelt membranes

Proposition 1 (C) Fix a basis (e) of Λ , and $\ell \ge 0$. Let $[M_{\ell}]$ be the membrane spanned by the vectors $(\nabla_1^j e_i)_{1 \leq i \leq n, 0 \leq j \leq \ell}$. Then $F_k^{\ell}(\Lambda) \in [M_{\ell}]$ for all $k \geq 0$.

The lattices $F_k^{\ell}(\Lambda)$ for $0 \leq \ell \leq n$ can all be seen as elements of the same membrane $[M_n]$. Indeed, $F_k^{\ell}(\Lambda)$ is represented by the lattice point

 $\underbrace{\dots, 0}_{n \text{ times}}, \underbrace{k, \dots, k}_{n \text{ times}}, \dots, \underbrace{k\ell, \dots, k\ell}_{n \text{ times}}, v_{\Lambda}(\nabla_1^{\ell+1}e_1), \dots, v_{\Lambda}(\nabla_1^n e_n)).$

 $= (I_n A \cdots A_n)$ where $A_{k+1} = (z \frac{d}{dz} + A)A_k$ and $A_0 = I_n$.

The tropical projection π_{GL}^{Λ} onto the tropical linear space L_{GL}^{Λ} attached to the Gérard-Levelt membrane $\mathcal{M}_{GL}^{\Lambda}$ maps a point u to a *unique* representative. Checking if $k \ge m(\nabla)$ requires to know if the lattice points u_k^{n-1} and u_k^n represent the same lattice, that is, by (5)

$$\pi_{\mathrm{GL}}^{\Lambda}(u_k^n) = \pi_{\mathrm{GL}}^{\Lambda}(u_k^{n-1}).$$

Corollary 1 For any Λ , we have $m(\nabla) = \min\{k \in \mathbb{N} \mid \pi_{\mathrm{GL}}^{\Lambda}(u_k^n) = \pi_{\mathrm{GL}}^{\Lambda}(u_k^{n-1})\}$.

An intriguing example

$$A = \begin{pmatrix} -5z^{-2} & 5z^{-1} & -2z^{-1} & -9z^{-2} \\ 5z^{-3} & 3z^{-2} & 2z^{-2} & -4z^{-2} \\ 4z^{-1} & -5z^{-1} & -5z^{-2} & 2 \\ \frac{2-2z}{z^3} & -5z^{-1} & 3z^{-2} & -6z^{-2} \end{pmatrix}.$$

$$k, -4k - 4k - 4k - 4k)$$

$$-3k, -6, -5, -5, -6).$$

$$g_{\rm L}(u_k^n) = \pi_{\rm GL}(u_k^{n-1}) \iff k \ge \frac{3}{2}, \text{ therefore } m(\nabla) = 2.$$

Perspectives

• Which other invariants of connections admit tropical definitions and/or

• Is there a computation of the tropical projection map which is more efficient than the methods based on gauge transformations?

References

R. Gérard et A. H. M. Levelt, Invariants mesurant l'irrégularité en un point singulier d'un système d'équations différentielles linéaires, Ann. Inst. Fourier, 23(1), 1973, 157-195.

M. Joswig, B. Sturmfels, J. Yu, Affine buildings and tropical geometry, *Alb. J. Math*, 1(4), 2007, 187–211.

F. Ardila, Subdominant matroid ultrametrics, Ann. Combinatorics, 8, 2004, 379–389