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Introduction
Given a meromorphic linear differential system on the Riemann sphere,

dX

dz
= A(z)X with A(z) ∈ Mn (C(z)) , (1)

the nature of a singularity of A can be tackled by the study of lattices in a
connection attached to the differential system. We use the geometric frame-
work of the Bruhat-Tits building of SL(K), where K = C((z)), and show that
this can be performed by computations on the tropical linear space Lp at-
tached to the valuated matroid p corresponding to a given membrane in the
Bruhat-Tits building.

Meromorphic connections
A meromorphic connection is a map ∇ : V ' Kn −→ Ω(V ) = V ⊗K Ω1

C(K)
which is C-linear and satisfies the Leibniz rule

∇(fv) = v ⊗ df + f∇v for f ∈ K and v ∈ V.

The matrix Mat(∇, (e)) is given by ∇ej = −∑n
i=1 ei ⊗ Ωij for a basis (e). A

basis change P ∈ GLn(K) gauge-transforms the matrix of ∇ by

Ω[P ] = P−1ΩP − P−1dP. (2)

Contracting with zk d
dz yields a differential operator ∇k, and system (1) is the

expression of ∇0(v) = 0 in the basis (e).
A lattice Λ in V is a free sub-O-module of rank n, that is a module of the form

Λ =

n⊕
i=1

Oei for some basis (e) of V.

The Poincaré rank of ∇ on the lattice Λ is defined as the integer

pΛ(∇) = −vΛ(Λ +∇1(Λ)) = min{k ∈ N |∇k+1(Λ) ⊂ Λ} = max
i,j

(−v(Ωij), 0). (3)

The true Poincaré rank m(∇) = minΛ pΛ(∇) characterises the kind of solu-
tions around the singularity of (1)
•m(∇) = 0, regular : Y = U(z)zL with U meromorphic and L ∈ Mn(C),
•m(∇) > 0, irregular : Y asymptotic to F̂ (z)zLeQ, with F̂ meromorphic

formal, Q = diag(q1(z
1/k), . . . , qn(z

1/k)) with qi ∈ 1
zC[1z ].

Another important invariant is the Katz rank κ(∇) = 1
k maxi(− deg qi).

Example: A =

(
z−1 z−N

0 z−1

)
has Poincaré rank p = N − 1 but is regular.

Gérard-Levelt’s saturated lattices
For k > 1, Gérard and Levelt define the lattices

F `
k(Λ) = Λ +∇kΛ + · · · +∇`

kΛ.

Theorem 1 (Gérard, Levelt) The true Poincaré rank m(∇) of ∇ is

m(∇) = min{k ∈ N |F n−1
k (Λ) has Poincaré rank 6 k} for any lattice Λ ⊂ V.

Finding the true Poincaré rank is finding the largest lattice whose Poincaré
rank matches its index in the following sequence

Λ ⊂ F n−1
p−1 (Λ) ⊂ · · · ⊂ F n−1

0 (Λ) (4)

The affine building of SL(V )

The affine building Bn attached to SL(V ) is the flag simplicial complex of the
graph whose

• vertices are the homothety classes of lattices in V

• edges connect vertices L and L′ for which ∃Λ ∈ L, ∃M ∈ L′ such that
zΛ ⊂ M ⊂ Λ.

Let M = {d1, . . . , dm} be lines such that d1 + · · · + dm = V . The subcomplex

[M ] = {Λ = `1 + · · · + `m | `i is a lattice in di}

is called by Keel and Tevelev the membrane spanned by M .
For a choice A = (v1, . . . , vm) of non-zero vectors in the lines di, any lattice Λ
in the membrane [M ] for M = {d1, . . . , dm} can be written Λu =

∑m
i=1Oz−uivi

for a lattice point u ∈ Zm.

Tropical convexity and lattices
Membranes spanned by m lines in the Bruhat-Tits building have a faithful
representation as tropical linear spaces in m-dimensional space.
Let (T = R ∪ {∞},⊕ = min,¯) be the tropical semialgebra and consider the
projective tropical spaces

TAm−1 = Rm/R(1, . . . , 1) and TPm−1 = Tm\{(∞, . . . ,∞)}/R(1, . . . , 1).

A membrane M and a basis (e) of V determine a valuated matroid

p : [m]n −→ R ∪ {∞}
ω 7−→ v(det(e) Mω)

where Mω = (vω1, . . . , vωn) is the subfamily of vectors of M indexed by ω.
A cocircuit of the matroid p is a vector defined for some σ ∈ (

[m]
n−1

)
by

p(σ∗) = (p(σ ∪ {1}), . . . , p(σ ∪ {m})) ∈ Tm

Theorem 2 (Yu,Yuster) The tropical linear space Lp ⊂ TPm−1 associated
with this valuated matroid is the tropical convex hull of the cocircuits of p.

Theorem 3 (Keel,Tevelev) The nearest point projection map πLp :
TPm−1 −→ Lp be induces a bijection ΨM between [M ] and Lp

ΨM(Λu) = πLp(u1, . . . , um).

In particular, Mu = (z−u1v1, . . . , z
−umvm) and Mu′ = (z−u′1v1, . . . , z

−u′mvm) span
the same lattice Λ (up to homothety) if and only if πLp(u) ≡ πLp(u

′) modulo
tropical scalar multiplication.
There are explicit formulæ for this projection (Blue and Red rules – Ardila,
Joswig, Sturmfels and Yu): if the projected points are computed by these
rules, then we even have

Λu = Λu′ ⇐⇒ πLp(u) = πLp(u
′). (5)

The Gérard-Levelt membranes
Proposition 1 (C) Fix a basis (e) of Λ, and ` > 0. Let [M`] be the membrane
spanned by the vectors (∇j

1ei)16i6n,06j6`. Then F `
k(Λ) ∈ [M`] for all k > 0.

The lattices F `
k(Λ) for 0 6 ` 6 n can all be seen as elements of the same

membrane [Mn]. Indeed, F `
k(Λ) is represented by the lattice point

u`
k = (0, . . . , 0︸ ︷︷ ︸

n times

, k, . . . , k︸ ︷︷ ︸
n times

, . . . , k`, . . . , k`︸ ︷︷ ︸
n times

, vΛ(∇`+1
1 e1), . . . , vΛ(∇n

1en)).

Definition 1MΛ
GL = [Mn] is called the Gérard-Levelt membrane attached to Λ.

If Mat(∇1, (e)) = A, in this basis MΛ is described by the n× n(n + 1) matrix

M =
(

In A · · · An

)
where Ak+1 = ( z d

dz + A)Ak and A0 = In.

The tropical projection πΛ
GL onto the tropical linear space LΛ

GL attached to
the Gérard-Levelt membrane MΛ

GL maps a point u to a unique representa-
tive. Checking if k > m(∇) requires to know if the lattice points un−1

k and un
k

represent the same lattice, that is, by (5)

πΛ
GL(un

k) = πΛ
GL(un−1

k ).

Corollary 1 For any Λ, we have m(∇) = min{k ∈ N |πΛ
GL(un

k) = πΛ
GL(un−1

k )}.

An intriguing example

A =




−5z−2 5z−1 −2z−1 −9z−2

5z−3 3z−2 2z−2 −4z−2

4z−1 −5z−1 −5z−2 2
2−2z
z3 −5z−1 3z−2 −6z−2


 .

un
k = (0, . . . ,−3k,−4k − 4k − 4k − 4k)

un−1
k = (0, . . . ,−3k,−6,−5,−5,−6).

One gets πGL(un
k) = πGL(un−1

k ) ⇐⇒ k > 3

2
, therefore m(∇) = 2.

The Katz rank is usually computed after ramifying the variable ζ = z1/p to a
suitable order. Here κ(∇) = 3

2, so the formula in corollary 1 generalizes to
R+ in this case.

Perspectives
•Which other invariants of connections admit tropical definitions and/or

computations?
• Is there a computation of the tropical projection map which is more effi-

cient than the methods based on gauge transformations?
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