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Abstract

The study of the evolutionary history of organisms (Phylogeny) is a demanding task involving different

steps of analyses. The automation of this steps will make phylogenetic analyses faster and easier to

do.

We will develop a phylogenetic pipeline capable of carrying out all steps needed for a complete

phylogenetic analysis. In a next step we will apply this pipeline to try to answer a fundamental

question about the phylogeny of sponges.

Recent phylogenetic studies revealed that the group of sponges consists of an inferred common

ancestor and but not all of its descendants. This is contrary to what people previously thought about

the history of sponges.

The application of the phylogenetic pipeline to this problem should give an answer which hypothesis

to corroborate.
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Chapter 1

Introduction

1.1 Evolutionary Theory and Diversity of Life

To prepare himself for the study of natural history in the tropics, Charles Darwin visited the Galapagos

Island aboard HMS Beagle to investigate living organisms and fossils. He observed finches and noticed

that they differed depending on the island they came from. The population of finches had adopted

to the circumstances of each individual island. He assumed that some kind of selection process was

acting on the populations. After returning home from the Galapagos Islands, Darwin published his

Figure 1.1: The fourteen different species of finches that were observed by Darwin on the Galapagos
Islands. (Figure taken from (Wel00).)

new observations and assumptions in the book “The origin of Species by Means of Natural Selection”

(Dar59). In the book he assumed that ”all the organic beings which have ever lived on this earth

have descended from some one primordial form” and supported the hypothesis with many examples.

This knowledge formed the basis for the creation of a new field of science: The study of evolutionary

history of organisms. Darwins ideas encouraged other scientists to use morphological, paleontological,

and biogeographical information to infer relationships among species. Darwin, his colleagues, and

his successors used this information to understand the relationship among species and the range of

biodiversity on earth.

1.1.1 Natural Selection

Darwin called the main driving force of evolution “natural selection”. This process acts within and

between populations. It assumes that there are more individuals than the environment can support.

Therefore, there is a competition for survival within and between populations of individuals. In-

dividuals that can adopt best to the environment have a higher likelihood to survive and produce

1



1.1 Evolutionary Theory and Diversity of Life Chapter 1 Introduction

offsprings. In the course of time this process forms populations of individuals well adapted to an

environment. As the environment can change, so can the process of natural selection. A change

of the environment can lead to a change in the way natural selection favors traits. Changes to an

environment can be e.g. a change of climate an volcanic eruption.

1.1.2 Modern Synthetic Theory

Darwin’s idea of natural selection was fundamental, but he couldn’t describe the genetic basis. Based

on this knowledge Gregor Meddel introduced the impact of heredity and variability in populations

from his observations on peas (Men66). In the 20th century Huxley united the fields of genetics and

evolution with his publication about neo-Darwinism (Hux74). Now it was clear that genetic mutation

was the basis of natural selection. In the early 1960s protein data showed that the variability among

populations was much greater than expected (BS67). Various theories were proposed at that time.

One such theory was the neutral theory of evolution, which assumes that most mutations are neutral

and dependend on mutation rate and population size (Kim68). The neutral theory and the theory

of natural selection both assume only a small proportion of mutations to affect the individuals of a

population.

1.1.3 The Genomic Era

In the early 20th century, William Bateson introduced the name genetics to describe the study of

heredity, variation and inheritance.

Figure 1.2: Two-dimensional structure of DNA. (Figure taken from (DNA).)

It was only in the year 1953, when Watson and Crick investigated the very basic of molecular genetics

- the deoxyribonucleic acid (DNA). They were the first to describe its physical and chemical structure.

The DNA contains the information for the development and functioning of all living organisms. It

is a long polymer of of nucleotides (A - Adenine, G -Guanine, C - Cytosine, and T - Thymine)

held together by a sugar-phosphate backbone (See Fig. 1.2). The DNA codes for the production of

messenger RNA (mRNA) and ribosomes read the coded information carried by the mRNAs and use

it for protein synthesis. These processes are called transcription and translation respectively. The

Page 2



Chapter 1 Introduction 1.1 Evolutionary Theory and Diversity of Life

flow of information from DNA to RNA and to the Protein sequence is known as “the central dogma of

molecular biology” (See Fig. (Dog)) The DNA can be copied and passed from one generation to the

next one. Since the replication process is not always perfect, errors can be introduced to the sequence

of nucleotides.

Figure 1.3: The information flow known as the central dogma of molecular biology. The sequence
of DNA is first transcribed to RNA and then translated to a protein sequence. (Figure taken from
(Dog).)

These errors include insertions and deletions of nucleotides (indels) as well as substitutions of nu-

cleotides. Changes to this sequence are referred to as mutations. The invention of fast sequencing

methods (SC75) and the polymerase chain reaction (SSF+85) formed the basis for the automation

of DNA sequencing. With DNA sequences becoming available scientist started to use molecular data

rather than morphological to infer phylogeny. First they used single genes, but later whole genomes

could be considered in phylogenetic studies.

1.1.4 Tree of Life

Darwins had the idea that all living things are related through common ancestry and that this relation

could be expressed by a ”great Tree of Life” (Darwin, 1859). Scientists used Darwins idea of represent-

ing the process of evolution as a tree structure to classify organisms. In the course of time this tree

underwent some major changes: Haeckel (1866) divided all organism into two domains, plants and

animals, Copeland (1938) into four and Whittaker (1959) extended to five domains to accommodate

the fungi. Carl Woese and colleagues were the first to use the advancing molecular techniques and

were able to identify the three domains of life: Prokaryotes, Archaea, and Eukaryotes (WF77). The

study of evolutionary processes not only revealed the tree of life (See Fig. 1.4) but also helped in other

fields of biology:

Evolutionary analyses have been applied to estimate the timing of a common ancestor of the HI virus

(KMT+00), investigating the origins of deadly flu 5 strains (WRP+02) and the genetic mechanisms

of malaria (KEI+02).

Page 3



1.2 Reconstruction of Phylogenies Chapter 1 Introduction

Figure 1.4: The Tree of Life as proposed by Ernst Haeckel in ”The Evolution of Man” (1879). (Figure
taken from (Tre).)

1.2 Reconstruction of Phylogenies

The study of molecular phylogenetics can be seen as the problem of finding the tree diagram that

represents the relationship for a set of amino-acid or nucleotide sequences best. In the course of time

a great variety of approaches to this problem have been proposed. In general, these approaches split

up the reconstruction of phylogenies into two main steps - the alignment and the inferring of the tree

itself. The first step for a successful phylogenetic analysis is the appropriate choice of a dataset.

While morphological data (size, biochemical properties, etc) were used in the beginning, scientists

now use molecular data (DNA or protein sequences). E.g. rRNA sequences as the 18S rRNA or the

28S rRNA are useful markers in phylogenetic analysis, because genes that encode the rRNA are found

in every organism and these genes are the most conserved genes in all cells. The focus of phylogenetic

studies is to compare organisms of interest to other well-studied organism. Tools like BLAST (See

Sec. 2.1.2) try to find similar sequences in databases. This is an important step, as the choice of

inappropriate sequences can lead to a misleading result of the analysis (See Sec. 2.2). Although

sequencing methods have been improved, only a small proportion of genes for a small number of

organism have been sequenced and scientist have to decide which taxa / characters to include or to

exclude from the analysis. This is another point to deal with in the process of finding an appropriate

dataset (See Sec. 2.2) ready to be aligned in the next step.

The alignment (See Sec. 2.3) is the lining up of the sequences in a way that parts of the sequences

that seem to be evolutionary related are grouped. Although it is possible to do alignments by hand,

only automated methods will be used in this thesis. The evolutionary process has shaped molecular

sequences by inserting / deleting or substituting nucleotides and therewith amino acids. Alignment

methods try to maximise the similarity between a set of input sequences by introducing gaps. The

computation of an optimal - according to some cost function - alignment for two sequences of length

n requires time O(n2) using dynamic programming algorithms. Nowadays datasets consists of several

tens of sequences and the time to align these sequences is O(nm), where m is the number of sequences,

and heuristics have to be used to master this problem. Some of these heuristics simplify the com-

putation of multiple sequence alignments by pairwise aligning the most similar sequences and adding

Page 4



Chapter 1 Introduction 1.3 The History of Sponges

the next similar sequence (See Sec. 2.3.5.1). More advanced heuristics allow heterogeneous inputs

(See Sec. 2.3.5.2), extend the side-by-side comparison to a segment-by-segment comparison (See Sec.

2.3.5.3) or use k-mer counting and profiles for the alignment (See Sec. 2.3.5.4). Once the alignment

has been computed it can be curated either automatically or manually. Whereas the manual curation

requires expert knowledge, the automated curation is based on the selection of similar (conserved)

blocks for further analysis (See Sec. 2.3.6).

Darwin was the first to postulate the use of a tree to represent the process of evolution (1859).

With the course of time, scientists invented different method of inferring trees. In the beginning the

simply counted the number of nucleotide / amino acid matches between sequences to get a measure of

similarity and used distance methods as neighbour-joining (See Sec. 2.4.2) to infer a tree. But these

methods had a number of drawbacks, which methods like maximum parsimony try to compensate(See

Sec. 2.4.1). This method is based on the assumption that the most plausible hypothesis is to be

preferred and searches for the tree that minimises the number of implied evolutionary changes (e.g.

indels, substitutions). Since parsimony is not able to detect multiple substitution it faces the problem

of long branch attraction - the phenomenon when rapidly evolving lineages are inferred to be closely

related, regardless of their true evolutionary relationships (See (San02) for up-to-date discussion).

The next development in phylogenetic methodology was the idea to apply the problem of inference

of phylogenies to other statistical inference problems. With the postulation of probabilistic models of

evolution by Felsenstein (Fel81) it became possible to compute the likelihood of a phylogenetic tree.

The likelihood of a statistical model is defined as the probability of the observed data given the model.

The idea of maximum likelihood methods (See Sec. 2.4.4.4) is that the model which makes the observed

data most probable is to be preferred. There are a variety of different substitution models (See Sec.

2.4.3.1) - describing the process of changes in sequences - and methods to select the best model for

further analysis. Bayesian methods (See Sec. 2.4.4.5) are very similar to maximum likelihood methods

because the make use of the same probabilistic model (the likelihood, P (data|model)1). The equation

P (model|data) =
P (data|model) × P (models)

P (data)

is called Bayes’ theorem. A strength of bayesian methods is its ability to include additional parameters

such as branch lengths or substitution rates by using Markov chain Monte Carlo (MCMC) . Since

heuristics are used to carry out phylogenetic analysis, it is no guaranteed to get the best result.

Confidence for the result can be achieved using permutation test (e.g.Bootstrapping (See Sec. 2.7)).

1.3 The History of Sponges

Sponges are primitive, sessile, mostly marine, water dwelling, filter feeders . They pump water through

their bodies to filter out particles of food matter. Sponges (their scientific name is: Porifera) represent

the simplest of animals (metazoans). Sponges are exclusively aquatic (water dwelling), most marine,

found from deepest oceans to the coast of the sea. They play an important role in many marine

habitats but little is known about their diversity, biology and ecology as compared with most other

1This is the probability of the data, given the occurrence of a probabilistic model
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1.3 The History of Sponges Chapter 1 Introduction

animal groups. Sponges are able to actively pump up to 10 times their body volume per hour. That

makes them the most efficient vacuum cleaners of the sea. During the late 19th century and the mid

20th century many publications have contributed to gain knowledge about sponges. This knowledge

has helped to understand structural, physiological, and biochemical mechanisms of the sponges and

provided answers to fundamental biological questions (e.g. the biosynthesis of chemicals, the evolution

of eukaryotic immunology, cellular theory, etc.). About 7,000 species are currently known and grouped

as Demospongiae, Hexactinallida, and Calcarea. Demospongiae (See Fig. 1.5 as an example for a

sponge from the class Demospongiae) are by far the biggest group (90% of sponges are demosponges).

Their skeletons are composed of spongin fibers and/or siliceous spicules (Demb).

Figure 1.5: Orange Finger Sponge (Neoesperiopsis rigida (Demospongiae)). (Figure taken from
(Dema).)

The hexactinellids (Glass sponges) are characterized by siliceous spicules consisting of six rays

intersecting at right angles, much like a toy jack (Hex). Members of the group Calcarea are the only

sponges that possess spicules composed of calcium carbonate. These spicules do not have hollow axial

canals (Cal). Beyond their role as water cleaners and reef builders in the marine ecosysem, they are

used as“bath sponges”(since early Greek civilization) or sources of therapeutic drugs. Scientist tried to

classify sponges by dividing them into different classes. Gray was the first to use morphological markers

to subdivided the sponges into the classes Silicea (Demospongiae + Hexactinellida) and Calcarea

(See Fig. 1.6 (left part)). This distinction was maintained until Reiswig and Mackie subdivided

the sponges into “Symplasma”(Hexactinellida) and “Cellularia”(Demospongiae + Calcarea). The use

of molecular data (28S rDNA (LBEVC92) and 18S rDNA (BMA+01)) showed paraphyly within the

sponges, whereby Calcarea seemed to be closer related to other metazoans than to Silicea (See Fig. 1.6

(right part)). Further analysis supported the closer relationship of Calcarea to Ctenophora (Jellyfish).

This is contrary to the former assumption of the monophyly of sponges, that means that the group

of sponges consists of an inferred common ancestor and all its descendants as well. Medina et al used

full-length 28S and 18S rDNA to find strong support for the clade (Demospongiae + Hexactinellida),

but could not decide about the paraphyly of Porifera - the assumption that this group contains its

most recent common ancestor, but does not contain all the descendants of that ancestor. Further

investigations - with a larger Taxon Sampling - will hopefully reveal more about the history of the

sponges.
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1.4 Scope of this Thesis

The goal of this theis is to help to contribute to resolving the phylogeny of sponges. Several studies

have revealed new insights in the history of sponges. Condflicting results from phylogenetic analyses

based on 28S and 18S rDNA make the use of larger datasets necessary.

Figure 1.6: The two hypothesis about the history of phylum porifera. On the left side the hyphothesis
that sponges are a monophyletic group. And on the right side the hypothesis that the subphylum
“Calcarea” more closer related other eumetazoa like ctenophora or cnidara than it is to the two other
poriferan classes.

This thesis tries to answer the question if the group of sponges is monophyletic or paraphyletic (See

Fig. 1.6 (left)). The general opinion is that phylum porifera is a monophyletic group. The use of

extended datasets (multiple gene sequences - instead of just one or a few genes) should give us an

answer or at least a tendency if we can trust this hypothesis or not.

This dataset will be based on existing datasets from Rokas and Baurain (See Sec. 4). Both studied

the phylogeny of metazoans using large datasets. We will use these datasets as a framework to carry out

our analysis. Homology searches (using BLAST) will update the datasets by adding sponge sequences

from public databases. The use of popular alignment methods and the selection of conserved regions

from alignments afterwards will lead to high quality alignments ready for supermatrix or supertree

analysis. The parallel use of several methods in each step of the analysis and the bootstrapping of the

phylogenetic trees will measure the confidence in the data.

To automate the complete analysis a phylogeny pipeline will be developed to carry out all different

steps of the analysis automatically. This also includes an iterative approach to estimate the right

selection of parameters for the homology search.
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Chapter 2

Current Methods in Phylogenetic Analysis

The study of the evolutionary history of a group of organisms involves different steps of analyses. In

this chapter we would like to introduce the basics of phylogenetic analyses, starting with the search

for homologous genes, the multiple sequence alignment, the automated improvement of the alignments

and two approaches to reconstruct the phylogenetic tree

2.1 Search for Homologous Sequences

A single sequence of nucleotides or amino acids alone is not informative in the phylogenetic context,

it has to be compared with to sequences to be able to make assumptions about its evolutionary

history (SIM). This is usually done by comparing the sequence of interest to homologous sequences.

Figure 2.1: A gene is duplicated (at the root) to produce two paralogous genes. The process of
speciation produces orthologous genes in the branches Aus, Bus, Cus. (Figure taken from (Hom).)

Homologous sequences are thought to share a common ancestor; i.e at some point of time in the

evolutionary history, there was a protein which through processes of speciation or gene duplication

produced two homologous proteins (See Fig. 2.1). In the case of speciation events the resulting genes

are orthologs, in case of duplication events they are called paralogs1.

An appropriate algorithm is needed to automatically find homologous sequences for a given sequence.

This algorithm should take a (set of) sequence of interest and try to find similar sequences in databases.

An example for such an algorithm is BLAST (See Sec. 2.1.2) and examples for popular databases are

GenBank, dbEST or the Trace Archive which will be described in the next section.

1The focus of this thesis is the study of similarities of sequences on the amino acid level and not the similarity of
functions, so no distinction between ortholog and paralog sequences will be made.
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2.1.1 Molecular Databases

All molecular sequences as well as their annotations2 and additional information (e.g. publications)

are stored in databases. The three main primary databases (See Fig. 2.2) are DDBJ (DNA Data

Bank of Japan) (DDB), EMBL Nucleotide DB (European Molecular Biology Laboratory) (EMB),

and GenBank (National Centre for Biotechnology Information) (GENa). They are organised as the

International Nucleotide Sequence Database Collaboration (INSD) (INS). Three useful databases

Figure 2.2: The growth statistics in number of sequences of the largest public databases. The years
are on the horizontal, the number of entries in the databases are on the vertical axes. (Figure taken
from (The).)

for phylogenetic analysis are GenBank , dbEST and the Trace Archive hosted by the NCBI. These

databases contain protein and EST sequences and Trace files. Protein sequences (See Sec. 2.1.1.1) are

the first and best choice in the process of finding homologous sequences, because are usually annotated

and give scientist a high degree of confidence with homology searches. Additionally, EST databases

(See Sec. 2.1.1.2) and the Trace Archive (See Sec. 2.1.1.3) can be searched to increase the amount of

useful data for the phylogenetic study.

2.1.1.1 GenBank

Genbank is a public database for nucleotide and protein sequences, supporting bibliographic and

biological annotations (BBL+98). It was launched in 1982 by Walter Goad and colleagues3 and is

maintained by the NCBI. Sequence data are submitted from authors, sequencing centers, the US

Office of Patents and Trademarks (USPTO) 4 and daily exchanged with DDBJ and EMBL. Sequence

data from GenBank can be obtained in three possible ways:

The ENTREZ System is a database retrieval system that has access to over 20 biological databases

containing DNA and protein sequences and their annotations and related information5.

2additional information about the sequence. e.g. function of a gene, author who submitted the sequence, etc
3http://www.ncbi.nlm.nih.gov/
4http://www.uspto.gov/
5http://www.ncbi.nlm.nih.gov/Entrez/
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Chapter 2 Current Methods in Phylogenetic Analysis 2.1 Search for Homologous Sequences

BLAST is a set of programs to find local similarities between a query sequence and database sequences6

(See 2.1.2).

FTP is the third possibility of retrieving data from GenBank. The NCBI offers the full bimonthly

GenBank release in different file formats7.

2.1.1.2 dbEST

With the beginning of the high-throughput sequencing era , initiated 1991 by Venter and colleagues

(HAN), great interest has been put in a complete gene list for an organism. With this list researchers

should be able to broaden the knowledge about biochemical pathways, which would help in e.g. drug

design. One of the first steps after sequencing an organism is the collection of cDNA8 to identify new

genes. cDNA-clones are randomly chosen. They are short parts of the sequences of both ends of the

inserts (See Fig. 2.3). These sequences are called expressed sequence tags (EST). They are very short

Figure 2.3: The process of EST generation. A single-stranded mRNA sequence is first reverse tran-
sribed into a doubled-stranded cDNA sequence. Short parts of both ends of the complementary strand
are then sequenced. (Figure taken from (NCB).)

(400-600 bases), relatively inaccurate (2% error), and identified by comparing them to known genes

or other EST sequences. By comparing the EST sequences to known gene and assigning a putative

function they become useful in the search for homologous sequences for phylogenetic studies In 1992

GenBank established its own EST database, called dbEST (BLT93). It currently includes 42,050,137

entries9.

2.1.1.3 Trace Archive

The Trace Archive provides an database for DNA sequencing reads, associated Traces, and quality

values. These data come from whole-genome shotgun projects, EST projects, and other large-scale

sequencing projects.(Trab)

6http://www.ncbi.nlm.nih.gov/BLAST/
7ftp.ncbi.nih.gov
8complementary DNA (cDNA) is DNA synthesized from a mature mRNA template
9dbEST release 030907
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Table 2.1: The five organisms with the most EST sequences available in dbEST

.

Organism Number of ESTs

Homo sapiens (human) 4,070,035

Mus musculus (mouse) 2,522,776

Rattus norvegicus (rat) 326,707

Drosophila melanogaster (fruit fly) 255,456

Glycine max (soybean) 234,900

Traces are primary data from sequencing machines including quality values (probability of a base

being in error) for each base and ancillary information (like source DNA, size of insert, etc.) (BO05).

The Trace Archive is also hosted at NCBI. It currently contains 1,521,222,251 entries from 800 organ-

ism10(dbE)

Figure 2.4: The increase in number of sequences over the last 6 years in the Trace Archive. (Figure
taken from (Traa).)

2.1.2 BLAST - how to search databases

The number of available sequences rapidly increases (See Fig. 2.5)- mainly because of ongoing genome

sequencing project - automated searches for homologs in sequence databases (e.g. BLAST ) and the

following alignment of best hits from these searches are becoming a standard technique.

A quick way of obtaining a wealth (depending on the e-value) of similar sequences is the use of

comparison algorithms such as BLAST 11 (AGM+90), an approximation of the Smith-Waterman al-

gorithm (See Sec. 2.3.1.1).

BLAST contains a set of programs for different types of similarity searches (See Fig. 2.6). The pro-

grams differ in the type of query sequence (nucleotide or protein), the type of database to be searched

(nucleotide, translated nucleotide or protein), and the method to be used (standard or iterative). The

BLAST searches databases for local optimal local alignments (See Sec. 2.3.1.1). BLAST starts to

search for words of length W with a score of at least T when compared to the query sequence using a

substitution matrix (See Sec. 2.4.3.1). Since proteins consist of functional domains that are repeated

102007/03/17
11Although BLAST is a set of programs, this thesis refers to BLAST as only one program
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Figure 2.5: Increase in number of sequences from 1985 - 2005 at Genbank(NCBI). The years are on
the horizontal axes, the number of sequences in millions (left) and the number of base pairs in billions
(right) are on the vertical axes. (Figure taken from (GENb).)

within the same protein and across different proteins from different species, its best to use a local

alignment tool to find these short streches (”word”) rather than complete matching sequences.

The word hits are then extended - without introducing gaps - to try to generate an alignment with a

score of at least S. Parameter T ist mainly important for the speed and sensitivity of the algorithm.

The results of BLAST are presented as Figure 2.7 shows. Each Alignment is given an Score S and an

expectation value (e-value), that is ”the number of different alignments with scores equivalent to or

better than S that are expected to occur in a database search by chance. The lower the e-value, the

more significant the score” (E-V). The e-value is defined as

E = Kmn eλS

where K and λ represent natural scales for the search space and the scoring system. m is the size

of query sequence, n the size of the database, and S the score of the alignment. The e-value is first

indicator for a sequence being homologous to the query sequence or not (int):

• E < e-100: identical sequence (same gene/protein and organism)

• e-50 < E < e-100: almost identical sequence

• e-10 < E < e-50: closely related sequence

• 1 < E < e-5: could be a true homologue

• E > 1: most likely not related

Remember that the e-value is just an indicator for homology, but not a guarantee. So each alignment

should be viewed with a critical eye in order to declare it as useful for the further analysis or not.
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Figure 2.6: The different BLAST programs available for similarity searching. The horizontal arrows
indicate the query of a database using a query sequence. The other arrows indicate the translation of
a nucleotide sequence into a protein sequence. (Figure taken from (BLAa).)

Figure 2.7: The query sequence is represented by the numbered red bar at the top. Database hits are
shown aligned to the query, below the red bar. Of the aligned sequences, the most similar are shown
closest to the query. In this case, there are three high-scoring database matches that align to most of
the query sequence. (Figure taken from (BLAb).)

2.2 Taxon Sampling

The amount of sequence data has increased significantly during the past decade (Figure 2.5). This is

the consequence of new techniques such as the polymerase chain reaction (PCR) or faster sequencing

methods (e.g. 454 Sequencing).

This wealth of data has increased the number of phylogenetic analysis and led to new challenges

and research areas. One such area is called Taxon Sampling. The term Taxon Sampling was first used

by Hasegewa (HKY85) and Hillis introduced it for the use in phylogenetic analyses (Hil96). Taxon

sampling is the process of choosing which taxa / characters to include and which not in phylogenetic

studies. Since methods such as sequence alignment and the reconstruction of phylogenetic trees are

based on the initial set of homologous genes, Taxon Sampling is of extreme importance for the success

of every phylogenetic analysis. A selection of inappropriate taxa / characters can lead to misleading

estimations of phylogeny and should be taken very seriously.
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Taxon sampling is “driven by resource limitation” (RK03). This means that after the search for

homologous a given data matrix - with the taxa vertically and the characters horizontally lined up -

would contain many empty cells (no data or taxon available) (See Fig. 2.9). The taxonomic sampling

approach favors the use of large datasets - no matter if they contain empty cells or not -, because

large datasets will reduce the chance of running into trees with very long branches (e.g. those in

the Felsenstein zone (See Fig. 2.8)). Otherwise, the delection of taxa / characters reduces the

Figure 2.8: The effect of concurrent evolution along multiple branches. This can cause sequences
to appear very close, although they are very divert. Trees with this structure are said to be in the
Felsenstein zone. (Figure adopted from (Fel).)

computational burden, simplifies the inference process, and decreases the effect of error propagation

in the inferred tree.

Countless empirical studies have been published about this topic in last decade and led to a heated

debate among the supporters and opponents. The following two quotations summarize the different

opinions about Taxon Sampling for phylogenetic analyses:

“If the evolutionary question of interest does not require a large number of taxa, it seems

best to use fewer taxa because larger trees are more likely to contain inconsistent branches”.

(Kim96)

“Including large number of taxa in an analysis may be the best way to ensure phylogenetic

accuracy”. (Hil96)

Scientists have different opinions about the right selection of taxa. Therefore, no rule is available

for this Taxon Sampling problem. In the following we will take a closer look at how to handle this

situation.

Consider the situation of (for example) 10 taxa based on a combined analysis of two genes regions.

Five taxa are lacking data for the second gene as in Figure 2.9. The corresponding entries in the data

matrix are coded as either missing or unknown (’?’).

A researcher might choose to deal with this situation by deleting these taxa, deleting characters 3

and 4, or by simply including all the characters and taxa (taxonomic sampling approach). The first

two options are based on the implicit assumption that including these five taxa and characters 3 and

4 will somehow be problematic because of the effects of missing data.

2.2.1 The Taxonomic Sampling Approach: Including all characters and taxa

Although sequencing methods have been improved and many genes from different organisms have

been sequenced, the “sampling of genes and taxa for a given group of organisms [...] still is quite
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Figure 2.9: Missing data in phylogenetic analysis. Taxa two, three, four, seven, and nine lack data
for characters 3 and 4. The researcher can deal with this situation by excluding problematic data or
including all data. (Figure taken from (Wie06).)

sparse” (SDR+03). For most taxa only a small proportion of sequences is available, so a combination

of available gene sequences for any taxonomic group would led to the situation of a data matrix with

many empty cells (See Fig. 2.9). A naive solution would be to exclude all taxa with missing data from

the data matrix. But the fear of eliminating taxa / characters and with it (important) phylogenetic

signal remains. Since eliminating missing data cells also means eliminating non-missing data, its

hard to balance between the benefit of excluding missing data cells and the cost of excluding taxa /

characters. A possible approach to a solution was the development of the supertree approach (See

Sec. 2.6) that combines the information (topologies) from different source trees to one single tree.

2.2.1.1 Adding taxa or characters

The general assumption in many fields of science is that more data lead to a stronger supported

hypothesis. This is only partly true for the field of phylogentic analysis, because there are special

cases where the opposite is true, e.g. the Felsenstein Zone (also called long branch attraction (LBA))

(See Fig. 2.8). In these cases adding taxa increases the probability to estimate the wrong tree (HP89).

In general there is no consensus about the benefit of adding taxa or characters. Different authors

yield different hypotheses although each one is well founded wihtin its individual study12. One general

statement can give a idea on how to handle this: “most accurate reconstruction are based on a large

amount of characters - if the data is of high quality” (NEK99).

2.2.1.2 Adding both taxa and characters

Adding taxa and characters lead to an increase of the size of the data matrix. This step will certainly

also increase the comlexity and with it the running time of phylogeny methods, but a positive effect

12See (Wie06) for more information

Page 16



Chapter 2 Current Methods in Phylogenetic Analysis 2.2 Taxon Sampling

that small datasets - where crucial data are absent and lead to erroneous results could be reached -

can be avoided.

2.2.1.3 The Impact of Incomplete Taxa: Deleting taxa and characters

Before incomplete taxa13 are removed from further analysis, its important to take a closer look at the

impact of these data on phylogenetic analyses.

There are good reasons for not excluding these data. Simulations showed that there is little support

for excluding dubious taxa based on the amount of missing data they bear. It has been shown

that incomplete taxa can be accurately placed in a phylogeny (through simulations) and with strong

statistical support (through emperical analyses). They can even increase the phylogenetic accuracy

for complete taxa. This has been shown by (Wie06). He also proved that the essential condition for

the correct placing in the phylogeny is the amount of characters present and not those that are absent.

Usually there is no knowledge about the “true” tree and therefore no justification for making an a

priori decision on what data is reliable or not. All data can be seen as evidence of evolution. But if

there is detailed knowledge about the taxa, an a posteriori approach can be used to compare with an

expected result. This can lead to the exclusion of taxa if a known monophyly of a clade is violated in

the inferred tree (NC96).

13
> 75% missing data
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2.3 Sequence Alignment

Whether the aim is the phylogenetic analysis of several homologous, the identification of motifs or

patterns, or structural modelling, multiple sequence alignments give the researcher the possibility go

gather more information than a single sequence can offer. The goal of the sequence alignment problem

is to take a set of amino acid (Protein) or nucleotide (DNA/RNA) sequences and arrange them in

a way to minimise/maximise a given cost function. If two sequences are to be aligned, we speak of

pairwise sequence alignment and multiple sequence alignment with more than two sequences.

2.3.1 Pairwise Sequence Alignment

Given two sequences, an optimal alignment can be computed using dynamic programming. The two

most popular approaches calculate global and local alignments (See Fig. 2.10).

Figure 2.10: The difference between global and local alignments.

2.3.1.1 Needleman-Wunsch

The Needleman-Wunsch algorithms has been first described in 1970 by Needleman and Wunsch

(NW70). This approach tries to maximise a similarity score by computing global alignments. The

algorithm computes a global alignment in three steps:

• A matrix represents all possible pairings of two sequences and their similarity with a similarity

score. This similarity score can be based on biochemical or evolutionary information.

• A path trough the matrix starts in the upper-left corner and ends in the lower-right corner. At

every step of the path the algorithm tries to find the best alignment that ends there.

• The best alignment is the alignment with the highest total score.

2.3.1.2 Smith-Waterman

The Smith-Waterman algorithm, proposed by Smith and Waterman in 1981 (SWF81), is based on the

Needleman-Wunsch algorithm, but in contrast it calculates a local alignment. The algorithm allows to

align subsequences (with all possible lengths) to find local similarities between sequences. Additionally

to the similarity score a gap penalty - for occurrences of gaps in the alignment - is subtracted from

the total score.

2.3.2 Multiple Sequence Alignment (MSA)

The Needleman-Wunsch algorithm was originally designed for only two sequences. In principle, it is

possible to extend the Needleman-Wunsch algorithm to deal with more than two sequences. But since
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the number of cells in a multiple alignment matrix growth exponentially with the number of sequences

and their lengths, simultaneous alignments for more than a few sequences are a big computational

problem. The use of heuristics makes tries the solve the problem of MSA.

2.3.3 Example of an multiple sequence alignment

Figure 2.11 (upper part) shows a way of looking at problem of multiple sequence alignments. These

sequences represent only parts of protein sequences. The Symbols correspond to amino acids. Figure

Figure 2.11: Example: Protein sequences before (upper part) and after (lower part) the alignment
step.

2.11 (lower part) now shows a possible alignment for the given set of protein sequences. All sequences

have the same length. This has been achieved by introducing gaps (’-’) to put similar parts of the

sequences in the same column (and therefore minimise a given cost function).

2.3.4 Basics

Definition 1 (Multiple Sequence Alignment, MSA)

Let
∑

be a finite alphabet without gap (’-’) and
∑

′ =
∑

∪{′−′}. Let further be s1, . . . , sk k sequences

over
∑

with lengths l1, . . . , lk. A (global) multiple alignment A of s1, . . . , sk is a matrix of dimension

k × l with the following constraints:

• max(l1, . . . , lk) ≤ l ≤
∑k

i=1 li

• A[i][j] ∈
∑

′ ∀ 1 ≤ i ≤ k, 1 ≤ j ≤ l

• For each two symbols of a sequence sk,i, sk,j with i ≤ j the relative order throughout the alignment

process stays the same. If their new positions in the MSA are sk,i′ and sk,j′, then i′ ≤ j′
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• No column consists of only gaps

• The number of sequences is k ≥ 2 (k = 2 is a pairwise alignment)

Definition 2 (Optimal Alignment) An optimal Alignment is the one that minimises/maximises a

given cost function. One such function is the Sum of Pairs Score. It is defined as follows:

SP =
l∑

h=1

∑

(i,j,i<j)

c(si,h, sj,h)

with:

• si,h represents elements of the matrix;

• c:
∑

′×
∑

′ → R is a cost function for pairs of symbols;

• c(−,−) = 0;

It can be shown that the multiple sequence alignments with the Sum of Pairs Score is a NP-complete

problem (BV01). To reduce the computational complexity many approaches to the MSA problem are

based on pairwise sequence alignments.

2.3.5 Overview

Many approaches to solving the MSA problem have been developed in the past years. According to

Notredame (Not02) these approaches can be grouped as follows:

• Progressive algorithms: These class of algorithms is one of the easiest and most effective ways

to solve the MSA problem. Sequences are added one-by-one to a MSA with the progressive

method. The order of addition of the sequences is given by a precomputed criteria, such as the

similarity of every two sequences. A popular representative of this class is ClustalW (See Sec.

2.3.5.1.

• Exact algorithms: In contrast to the three other classes, exact algorithms always calculate an

optimal alignment. But the fact that the time complexity increases exponentially with increasing

number of sequences, the number of input sequences is drastically limited. A member of this

class is the Branch-and-Bound approach (Kec93).

• Iterative algorithms: Iterative algorithms start with an alignment and tries to refine it until no

improvement can be achieved. This class can be subdivided into algorithms using Simulated

Annealing, genetic algorithms or similar (stochastic iterative approaches) and algorithms based

on dynamic programming (non-stochastic iterative approaches). Muscle is a member of this class

(See Sec. 2.3.5.4).

• Consistency-based algorithms: Algorithms of this class try to use independent observations in

a way that keeps them consistent. Pairwise alignments are build and a solution is generated

(with an affection to consistent subalignments), that resembles the pairwise alignments most. A

mixture of progressive and consistency-based algorithms is T-Coffee (See Sec. 2.3.5.2).
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2.3.5.1 ClustalW

ClustalW is a widely used multiple sequence alignment program and was first described by Thomp-

son in 1994 (THG94). The basic algorithm of Clustalw consists of three parts, following the basic

progressive alignment procedure:

• Pairing of sequences to form a distance matrix

Pairwise distances for all sequences are calculated using standard methods for pairwise align-

ments. The score for the pairwise alignment is calculated using a word method described in Sec.

2.4.2 minus a penalty for gaps. Scores are organised in an n × n table to represent similarities

between the sequences.

• Using the distance matrix to calculate a guide tree

With the distance matrix as an input, a phylogenetic tree is created using the neighbour-joining

method (See Sec. 2.4.2). This tree is called guide tree, because it will guide through the process

of aligning the sequences in the next step. The primary resulting tree is unrooted and but will

be rooted so that also a weight for each sequence can be derived.

• Progressive alignment of sequences according to the guide tree

The branching order of the guide tree is used to align sequences according to the position of the

sequence in the tree. The method starts from the leaves of the rooted tree and works until it

reaches the root itself. At each step a pairwise alignment method (See Sec. 2.3.1) calculates the

score using a substitution matrix and a penalty for gaps. Once gaps have been introduced at an

early stage they stay fixed.

2.3.5.2 T-Coffee

T-Coffee (Tree-based Consistency Objective Function for alignment Evaluation) is a method mainly

based on a progressive alignment and was introduced in 2000 by Notredame (Not02).

Disadvantages of ClustalW are that a once introduced gap could not be removed throughout the

alignment process and that it used global alignments in to align sequences.

T-Coffee computes local and global alignments and summarizes them in a library. The global

information come from ClustalW , the local from Lalign, a variant of the Smith-Waterman algorithm,

The library is then extended by comparing every pairwise alignment to get information to guide

through the alignment process. A guide tree is then constructed and used to carry out the multiple

alignment process.

2.3.5.3 DiAlign

DiAlign, first described in 1997 by Morgenstern (MFDW98), is another alignment method that tries

to use local information to guide a global alignment.

DiAlign extends the residue-by-residue comparison of previous alignment programs by taking whole

segments - that are uninterrupted stretches of residues - into consideration.

The program DiAlign constructs alignments from gapfree pairs of similar segments of the sequences.

Such segment pairs are referred to as diagonals.
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Every possible diagonal is given a so-called weight reflecting the degree of similarity among the two

segments involved. The overall score of an alignment is then defined as the sum of weights of the

diagonals it consists of and the program finds an alignment with a maximum score – in other words:

the program tries to find a consistent collection of diagonals with a maximum sum of weights. For the

multiple alignment a greedy approach is used. DiAlign is especially suited to detect local similarities

in otherwise completely unrelated sequences.

2.3.5.4 Muscle

In 2004 Robert C. Edgar introduced Muscle, a ”multi sequence alignment with high accuracy and high

throughput” (Edg04).

The algorithm, implemented in Muscle, involves a fast estimation of distances using a k-mer14 count-

ing15 to reduce the computation time, a progressive alignment with a new object function based on

profiles, which is called ”log-expectation score” and refining the current alignment with tree-based

partitioning.

Figure 2.12: This diagram summaries the flow of the MUSCLE algorithm. There are three main
stages: Stage 1 (draft progressive), Stage 2 (improved progressive) and Stage 3 (refinement). A
multiple alignment is available at the completion of each stage, at which point the algorithm may
terminate. (Figure taken from (Edg04).)

The muscle algorithm is described as follows (See Fig. 2.12):

1. Distance measures and guide tree estimation

Similarities between the input sequences are computed using k-mer distances, a contiguous sub-

sequence of length k. This approach for counting similarities is used because the frequency of

k-mers in related sequences is higher than by chance. The resulting matrix is then clustered by

UPGMA (See Sec. 2.4.2) and a first multiple alignment is constructed according to the branching

order of the UPGMA-tree.

2. Profile alignment

As the use of the K-mer distance can be a cause for errors, the tree is re-estimated using the

Kimura distance16. For each pair of sequences from MSA1 the Kimura distance is computed, the

14A k-mer is a contiguous subsequence of length k
15in contrast to the pairwise alignment other methods use
16similar to the K-mer distance, but uses additional information from alignment sources
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resulting matrix (D2) is again clustered by UPGMA and the resulting UPGMA-tree (TREE2)

is used as a guide tree to carry out a progressive alignment (MSA2).

3. Refinement

TREE2 is divided into two subtrees by deleting the edge with the least distance to the root.

A profile of each multiple alignment in the subtree is generated. Realigning the two profiles

produces a new multiple alignment, whose score is compared to the score of the previous multiple

alignment (MSA2) in order to decide if the score is improved and the current alignment is to be

kept or redo the refinement steps until convergence or a user-defined threshold is reached.
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2.3.6 Selection of Conserved Blocks from Multiple Alignments

The use of multiple sequence alignments in phylogenetic analysis, particularly those that are not

very well conserved, requires the elimination of poorly aligned positions and divergent regions, since

they may not be homologous or may have been saturated by multiple substitutions (Cas00). Not all

alignments are useful for phylogenetic reconstruction. Sequences that are too similar therefore include

almost no phylogenetic signal17 or sequences that are so divert that they might contain multiple

substitutions and are not useful to build a reliable phylogenetic tree. Usually not all parts of a gene

evolve at the same rate, some parts evolve faster others slower. Parts evolving slower are well (usually)

conserved (e.g. functional domains) and therefore suitable for further analysis, whereas faster-evolving

parts are less conserved, full of gaps, and too divert to be included in further analysis. The latter

ones can be excluded (Lak91; OW93; SOWH96). Optimising the alignment is an important step,

because “it has been shown that the alignment method may have more impact than does the type of

tree-building method used” (ME97).

Gblocks (Cas00) is a method that is capable of optimising multiple alignments. It defines conserved

blocks in a multiple alignment according to a set of requirements and some thresholds, IF, FS, CP,

BL1, BL2, and excludes the rest of the alignment from further analysis. Gblocks defines several criteria

Figure 2.13: Alignment of ND3 sequences from several eukaryotes and a bacterial outgroup with the
blocks selected by the Gblocks program with default parameters underlined. Positions at which more
than 50% of the residues are identical and have no gaps are shaded. (Figure taken from (Cas00).)

for selecting a region of the alignment as a conserved block.

17that are differences between sequences be they on nucleic or amino acid level
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1. Positions are classified into three types: non-consevered (≤ IS identical residues or there is a

gap), conserved (≥IS and ≤FS identical residues) and highly-conserved (≥FS identical residues).

2. Long (>CP),contiguous and non-conserved regions are rejected, because these regions are usually

ambiguous.

3. Flanks of the remaining regions regions are examined and positions are removed until all highly

conserved regions are adjacent.

4. Conserved regions with length ≤ BL1 are also rejected, because the quality of an alignment is

hard to assess in smaller regions.

5. Positions with gaps and neighboring non-conserved positions are removed until a conserved

region is reached.

6. In the end remaining small blocks are kept unless they are ≤ BL2.

The defined blocks are then concatenated to an alignment and can be used for the further analysis.
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2.4 Methods of Phylogenetic Estimation

A fundamental problem in computational biology is the reconstruction of evolutionary tree (also

called phylogenetic trees). According to (HL03)) Methods trying to solve this problem can help in

study of evolutionary processes: Detection of orthology and paralogy, estimation of divergence times,

the Reconstruction of ancient proteins, the Finding of residues important to Natural Selection, the

Detection of recombinant points, the identification of mutations likely to be linked to diseases, and

the Determining of identity of new pathogens.

The problem of reconstructing phylogeny can be formulated as a computer science problem on

binary trees (adopted from (KW99)).

Definition 3 (A Phylogenetic Tree) A phylogenetic tree T = (V, E) is a connected, acyclic graph

with a set of vertices V , a set of edges E. A rooted phylogenetic binary (also called bifurcating) tree is

a directed tree with a unique node corresponding to the most recent common ancestor of all entities on

the leaves18. Each internal node has exactly two children, every edge e ∈ E is labelled with a positive

real number |e|, called its length, and each leaf is labelled with a taxon.

Current evidence shows that simultaneous speciation is quite rare, therefore, one is able to approxi-

mately describe most phylogenetic relationship using binary trees. All methods describe in this thesis

can be extended to deal with multifurcating trees (where the degree of an internal node can be ≥ 3).

The problem of phylogenetic reconstruction can be stated as:

Definition 4 (The Problem of Phylogenetic Reconstruction) Let T = t1, . . . , tn be a set of

taxa and a sequence si corresponding to each taxon ti. The problem is to find a phylogenetic tree with

leaves labelled t1, . . . , tn that fits the data best.

In order to decide which tree fits the data best, some criteria are needed to decide why one tree is

“better” than another tree. Criteria like parsimony , maximum likelihood , or Bayesian inference are

able to decide this question using different assumptions. Methods using this criteria belong to the class

of NP-hard problems and therefore, are computationally intractable (KW99). The use of heuristics

allows to find a solution for the problem of phylogenetic reconstruction using some criteria. There are

three classes of heuristics known. These are parsimony, distance-based and statistical methods.

2.4.1 Parsimony

The general idea of parsimony analysis is that a evolutionary tree is to be preferred that involves

“the minimum net amount of evolution” (ECS64). It means that the most plausible phylogeny (for

a given dataset) is the one which requires as few evolutionary events (e.g. insertions, deletions,..)

as possible. Parsimony implies that simpler hypotheses are preferable to more complicated ones. A

parsimony analysis run is straightforward. The different trees (in tree space) are scored according to

the number of evolutionary changes they require. That means that the algorithm counts the number

of evolutionary transitions required to explain the distribution of a character. The most parsimonious

18An unrooted tree is undirected and makes no assumptions about ancestry
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tree for a given dataset is seen as the preferred hypothesis of relationship among the taxa in the

analysis.

Parsimony methods make use of methods for searching the tree space (See Sec. 2.4.4) to reduce

complexity. An advantage of parsimony methods over other methods, is its running time, a disad-

vantage is that it assumes low rates in character chance which can lead to long branch attraction

(HL03).

2.4.2 Distance-based Methods

The main idea about distance-based approaches is that relatedness between the data can be first

transformed into a distance matrix representing the dissimilarities between each input sequence. These

distance matrix can be computed using a specific model of evolution (See Sec. 2.4.3.1). Various

algorithms can then be used to determine the best tree given the distance matrix. The three most

common approaches are UPGMA (SM58), neighbour-joining (SN87) and minimum evolution (DG04).

An advantage of the distance-based methods is that they are fast. A major drawback is that a

inappropriate selection of a model of evolution for the construction of the distance matrix can affect

the tree topology (DeB92). Distance-based methods are often used to estimate a guide tree for multiple

sequence alignments (See Sec. 2.3) or a starting tree for further analysis (e.g.maximum likelihood).

2.4.3 Statistical Methods

Statistical methods use of the likelihood criterion to measure the probability of different trees (in tree

space) given a tree and an substitution model (Fel81). The goal in methods under a maximum likehood

(ML) framework is to find the tree and evolutionary model that maximise the this probability.

2.4.3.1 Amino Acid Substitution Models

Substitution Models describe the process of changes from characters in one state to another state. The

divergence among sequences can be modeled with a mutation matrix. This matrix (M) contains the

probabilities that an amino acid mutates. The i-th row and the j-th column contains the probability

that amino acid i (aai) changes to amino acid j (aaj)

Mij = P (aai → aaj)

This corresponds to a model of evolution assuming that amino acid mutations occur randomly and

independently, but with some predefined probability. This is a Markovian model of evolution. The

predifined properties depend on the physico-chemical properties (hydrophobicity, size, charge, etc.)

of the amino acids and can be modeled as a matrix. Amino acids appear with different frequencies

in nature. These are denoted by Mi, where Mi is a vector of the Markov state matrix M Since this

model is symmetric, the propability of amino acid i mutating to amino acid j is the same as amino

acid j mutating to amino acid i.

Mij = Mji

Examples for widely used substitution models are Dayhoff (DSO78), BLOSUM, and CAT (CAT).
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2.4.4 Searching the Tree Space

Inferring phylogenetic trees is a computational challenge (CHHP00). The number of unrooted binary

trees for n taxa is

t(n) =
(2n − 5)!

2n−3(n − 3)!

where t is the number of possible trees (Fel04). For example there are 2.8 × 1076 possible trees for

a dataset of 50 taxa. This number is growing exponentially with increasing number of taxa. The

problem of finding the optimal tree is computational intractable (See Tab. 2.2).

Table 2.2: This table shows the increase in number of possible trees with the increasing number of
taxa

Number of Taxa Number of unrooted trees Number of rooted trees

2 1 1

3 1 3

4 3 15

5 15 105

6 105 945

7 954 10.395

8 10.395 135.135

9 135.135 34.459.425

10 34.459.425 2.13E15

15 2.13E15 8.E21

Heuristics can be used to make the computation feasible, but they do not guarantee to find the

optimal tree (CHHP00). Three popular heuristics in this context are listed below.

2.4.4.1 Nearest Neighbour Interchange (NNI)

The NNI uses an optimisation method called hill-climbing to search for the best tree in the tree space.

The basic idea is to define a neighbourhood criterion for trees and use a heuristic algorithm (e.g. the

greedy algorithm) to find a tree given by a local maximum.

Figure 2.14: The NNI algorithm. Branches are exchanged to yield new trees. (Figure taken and
changed from (HyPa).)

Page 28



Chapter 2 Current Methods in Phylogenetic Analysis 2.4 Methods of Phylogenetic Estimation

The neighbour area is the set of trees that can be reached by exchanging branches in the current

tree19 (See Fig. 2.14). The tree with the highest likelihood is selected as the best local tree and the

procedure is repeated until no better tree can be found.

2.4.4.2 Subtree Prune and Regraft (SPR)

SPR is similar to NNI, but uses a more extensive rearrangement algorithm. It cuts subtrees and pastes

them in distant parts of the tree (Kea06).

Figure 2.15: The selection of the subtree with leaves 1 and 2 from the original tree and the 4 possibilities
to paste it. (Figure taken and changed from (HyPb).)

For example, given a tree as in 2.15, the subtree with leaves 1 and 2 can be selected from the original

tree. Now there are 4 possibilities to paste the subtree resulting in a new tree. These possibilities are

branch 4, 5, 6, and the internal branch joining 5 and 6. The tree with the highest score is taken as

the local best tree. Again this procedure is repeated until no further improvement can be achieved.

2.4.4.3 Tree-Bisection-Reconnection (TBR)

The third algorithm presented introduces an even more extensive rearrangement method. It breaks

internal branches and treats the resulting subtrees as independent trees. All possible connections

between the two trees are examined to find the best tree (See Fig. 2.16). This method is more robust

than NNI and SPR, because it tries to find a global optimal tree.

2.4.4.4 Maximum Likelihood

Maximum Likelihood is a statistical method for the inference of phylogeny. The first method to

calculate a likelihood of a tree was given by Felsenstein (Fel81). The general idea is that the likelihood

is the probability of seeing the observed data (D, e.g. an alignment) given a model of evolution (T).

P (D|T )

19The starting tree or the local best tree
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Figure 2.16: The Tree Bisection and Reconnection method. The original tree is broken apart and the
two resulting subtrees are connected to yield the best score. (Figure taken from (Phyb).)

Input to the likelihood method is a set of (nucleotide or amino acid) sequences and a substitution

model. Given a branch with the state i and its length t, the probability of observing state j at the

end of that branch is then denoted as Pij(t). Current maximum likelihood methods are based ontwo

assumptions. The first is the independence of evolution for each site and the second assumption

is the independence of evolution of a branch from other branches. The probability of observing a

single (possible different) site at each of a leaf node of a tree given a substitution model is called site

likelihood. Using the first assumption the likelihood computation can be formulated as the product

of individual site likelihoods (Di)

P (D|T ) =
n∏

i=0

P (Di|T )

where T is the tree and P (D|T ) the likelihood of the tree. The knowledge of the likelihood for each

single site is enough to compute the likelihood for the whole alignment. The following example is

taken from (Kea06), because it describes the computation of the likelihood for a single site very well.

Given a tree like Figure 2.17

Figure 2.17: A phylogenetic tree. t0−6 denote the branch lengths, x − z internal nodes, and the
character states are given at the tips of the branches. (Figure taken from (Kea06).)

and an alphabet A = A, C, G, T , where A, C, G, T are nucleotides, then the likelihood of a site can

be computed as

P (Di|T ) =
∑

x∈A

∑

y=∈A

∑
z ∈P (A, C, A, T, x, y, z|T ) (2.1)
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This equation calculates the probability to observe the nucleotides A,C,A,T at the leaves of a tree

and three unknown nucleotides (x,y, and z) at internal nodes of Figure 2.17. The independence of

evolution along all branches lead to equation 2.1.

P (A, C, A, T, x, y, z|T ) =P (x)P (y|x, t5)P (z|x, t6)P (A|y, t1)

P (C|y, t2)P (A|z, t3)P (T |z, t4)
(2.2)

where t1−6 describe the length of the branches in Figure 2.17. Due to the summation sign and

the unknown internal nucleotides (x,y,z) in equation 2.1 the number of terms exponentially increase

in the equation. Therefore the computation is practible impossible (e.g. for 50 taxa, we have 49

internal nodes => 449 terms in the equation). Felsenstein used dynamic programming to calculate the

likelihood of a tree recursively - from the the tips of the tree down to the root (Fel81). The probability

of the events from internal node n to the leaves of a tree at site s assuming that the site state is ∈

(A,C,G,T) and is called conditional likelihood and is denoted as

∑

y=A,C,G,T

P (C|y, t2) × P (A|y, t1) (2.3)

The conditional likelihood of an internal site only requires the knowledge of the conditional likelihoods

of sibling nodes. According to equation 2.1 and equation 2.2 this can be rewritten to:

P (Di|T ) =
∑

x=A,C,G,T

(P (x)

(
∑

y=A,C,G,T

P (x|y, t5)P (y|A, t1)P (y|C, t2)

(
∑

z=A,C,G,T

P (z|x, t6)P (z|A, t3)P (z|T, t4))))

(2.4)

The computation follows a path from the leaves of the tree to the root. Assigning a 1 for an observed

base and a 0 otherwise, a walk from the the leaves of the tree will compute alphabetically ordered

4-tuples. An observed A at a particular site will be noted as (1,0,0,0) and sites with sequencing errors

can be treated as unknown (1,1,1,1) or e.g. being a purine (1,0,1,0). Since likelihood values are usually

very small they are presented as the negative natural log of the likelihood value.

2.4.4.5 Bayesian Inference

The maximum likelihood methods calculates the probability of seeing the observed data (D) given a

model/theory (T)

P (D|T )

Bayesian methods on the other hand calculate the probability that the model/theory is correct given

the observed data.

P (T |D)
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Since the bayesian methods are based on the likelihood function they inherit many of its properties.

This includes robustness to long branch attraction (AS04) and heterogeneous evolution (GK05). It

is possible to include prior knowledge such as a prior distribution of trees and to have a measure of

support for the phylogenetic hypothesis through the posterior probability. This posterior probability

is the probability of the ith tree conditional on the available data. Bayes’s theorem is used to calculate

this probability

P (Ti|D) =
P (D|Ti) × P (Ti)∑S

j=0 P (D|Tj) × P (Tj)

where P (Ti|D) is the posterior probability of tree i, P (D|Ti) is the likelihood of tree i, P (Ti) is the prior

probability of tree i and S is the number of possible trees. As Huelsenbeck stated (HLMR02) equation

2.4.4.5 shows that to calculate the posterior probability it is necessary to sum up over all possible trees

and integrate over all possible branch length and model parameters. Since this calculation can be very

expensive a Markov chain combined with monte carlo integration (MCMC) is used for approximation

(MNL99; YR97). The MCMC first starts with a random tree and creates new trees based on the

current tree (using e.g. SPR). This is done to examine a wide range of trees in the tree space. A

high degree of convergence for the phylogeny can be reached by sampling millions of trees (RH03),

but there always remains uncertainty of convergence (MV05). A possible solution is the comparison

of outputs from different runs, because different runs from different starting points in the parameter

space should lead to the same phylogeny to get strong support (HLMR02). Support for the results

can be achieved by periodically (e.g every 1000th generation) taking the current tree topology and use

the resulting set of trees to build up a set of probabilities for clades over the entire run (HLMR02)20.

20It should be considered that posterior probabilities are often higher than bootstrap (See Sec. 2.7)values.
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2.5 Supermatrix Approach

The concatenation of (incompletely) overlapping datasets is called supermatrix approach. These con-

catenated datasets form a matrix, which can be analysed using known phylogeny methods to yield the

best tree.

Supermatrix methods attempting to sample large groups of organisms (usually) face the problem

of a large amount of missing data. The effects of missing data and possible ways to deal with it are

described in Sec. 2.2.

The supermatrix approach (also known as ’simultaneous analysis’, ’combined-analysis’ or ’total-

evidence approach’) use all character evidence from all taxa directly and simultaneously (See Fig.

2.18).

Figure 2.18: Schematic representation of a MRP supertree (left) and a parsimony supermatrix (right).
Note that the two approaches are based on the same dataset but yield different trees. (Figure taken
from (dQG06).)

An advantage of supermatrices over supertrees (See next Sec.) is that they reveal hidden support,

that is, the increased support for a clade in simultaneous analysis as compared to separate analysis

of that data. Moreover, supermatrices can support relationships that are contradicted by supertree

methods. The full evidence from all characters can be assessed and used to estimate the phylogeny.

The increasing number of sequences available (See Fig. 2.2) favours the supermatrix approach

in the future systematic analysis, because supermatrices analyse data simultaneously and individual

characters are treated as phylogenetic evidence rather than just the topology of the trees.

2.6 Supertree Approach

Supertree construction is a phylogenetic approach to combine overlapping source trees - and not the

character data used to derive those trees - to build a single, large supertree (BE04). One of the main

justification for the use of supertree construction is the limited amount of data. It is still unclear

whether the entire history of a group of organism can be reconstructed correctly using only a few
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genes (KFC+98). By being able to indirectly combine heterogeneous forms of phylogenetic informa-

tion - the raw data (“total evidence” (Klu98)) or the tree topology derived from them (“taxonomic

congruence” (Mic78)), supertrees are a good method for constructing complete phylogenies of groups

with hundreds of species (BE05).21. Through the combination of different, heterogeneous datasets,

the use of supertrees make it possible to get new insights into evolutionary methods and history.

The first idea of supertrees date as far back as the field of systematic itself. In the beginning

nested trees were just pasted together as a kind of taxonomic substitution to yield a more informative

tree (informal supertree). The development of informal supertrees brought along new insights in

evolutionary processes. (e.g. Only through informal supertrees it was possible to imagine the “Tree of

Life”22 as a whole.) Figure 2.19 shows the evolution of supertrees from informal to formal supertrees.

Figure 2.19: Supertree techniques from past and present. (a) In the past, hierarchically nested trees
were crafted together to yield the supertree. Overlapping positions are shown in the same color. (b)
In the present, overlapping source trees are combined to yield the supertree. In this example a matrix
representation is used. Portions of the supertree determined from a single source tree are displayed in
the colour of that source tree. (Figure taken from (BE04).)

A big disadvantage of informal supertrees was that they are not able to include multiple source trees

of the same group, but the development of formal supertree methods has improved this situation. After

the first formal supertree method was introduced by (Gor86) - an analogy of strict consensus - various

methods have been proposed (See Tab. 2.3), but non of them could compete with the total evidence

approach (Supermatrix). With the introduction of matrix representation using parsimony, indecently

described by (Gor86) and (Rag92), an universal method for combining even incompatible source trees

was there to compete with the Supermatrix approach.

2.6.1 Types of supertrees

Supertree methods can be classified broadly as either direct or indirect methods (WTLB01). Direct

supertree methods are similar to classical consensus techniques. The supertree is derived directly from

the source trees without an intermediate step (See Fig. 2.20). Compatible trees (i.e. without conflicting

nodes and full taxon overlap) are required as input for direct supertree methods. Incompatible trees

cannot be incorporated in the analysis. The following table gives a short overview over the existing

direct (agreement) and indirect (optimisation) supertree methods.

21In contrast, the use of the supermatrix approach would have to deal with a matrix full of empty cells
22http://tolweb.org/tree/
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Figure 2.20: Diagrammatic representation of supertree construction, illustrating both direct and indi-
rect methods. (Figure taken from (BE04).)

Table 2.3: Overview of existing direct and indirect supertree methods.

Direct Supertrees Indirect Supertrees

MinCutSupertree Average consensus (Matrix representation using distances, MRD)

Modified mincut Supertree Bayesian supertrees

RankedTree Gene tree parsimony

Semi-Labelled- and AncestralBuild Matrix representation using compability (MRC)

Semi-strict Matrix representation using flipping (MRF)

Strict Matrix representation using parsimony (MRP)

Strict consensus merger Most similar supertree method (dfit)

Quartet supertrees

Indirect supertree methods use an intermediate step. The individual source trees topologies are

encoded and combined using a form of matrix representation. The matrix is then analysed using

an optimisation criterion (BEGS02). These criteria can be compatibility, likelihood , least-squares,

Bayesian methods, or parsimony.

The latter one is used in the supertree method called Matrix representation using Parsimony (MRP)

(Bau92; Rag92). A great advantage of indirect supertree methods is that the source trees need not to

be compatible.

2.6.2 Matrix Representation using Parsimony (MRP)

The use of a matrix as an intermediate step in supertree construction requires that the hierarchical

structure of the source trees is encoded in the matrix. For each internal branch of a source tree, those

taxa are listed that appear on one side of the branch and not on the other. The matrix representation

in its most basic form scores taxa descendend from that node as 1 and taxa not descendend scored as

0. This coding is called additive binary coding.

This coding scheme leaves a one-to-one correspondence between the matrix and the tree. Using

different optimisation techniques the matrix can be converted back to a tree (See Fig. 2.21). The

matrices for each single source tree are then concatenated into a single matrix. Taxa that are not
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Figure 2.21: The one-to-one representation between a tree and its matrix representation. (Figure
taken from (BE04).)

present in a given source tree are coded as missing (? ) and all trees are virtually rooted with an

unique outgroup (Bau92; Rag92). The use of parsimony as a optimisation criterion yield the final

supertree. Contrary to the supermatrix approach the elements created by the matrix representation

are statements of membership and are only functionally equivalent to characters (BE04).
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2.7 Tree Evaluation

Current phylogenetic methods use heuristic to find an optimal tree. Since heuristics do not guarantee

to find the best tree and methods for searching tree space can get stuck in a local maximum (and not

a global maximum23), scientists need a measure of confidence to evaluate results. There are several

procedures available to evaluate the phylogenetic signal in the data and the robustness of the tree

(SOWH96). The most popular class of tests is the test of data signal versus randomised data.

2.7.1 Bootstrapping

This method belongs to the class of randomised character data (Permutation tests). The idea is to

randomise parts of the data and rebuild the tree (See Fig. 2.22). This is done several times (e.g.

500) and estimates the accuracy of the tree by comparing the topology of parts of the tree build with

randomised data and the real data. The bootstrap method was invented by Efron in 1979 (Efr79) and

introduced as a tree evaluation method by Felsenstein in 1985 (Fel85).

Figure 2.22: The process of bootstrapping. Parts of the dataset are randomised, the tree is inferred
and the number of matching topologies determines the bootstrap value. (Figure taken from (Boo).)

The output of the bootstrap method - given a tree as input - is a number associated with a branch.

This number is the proportion of bootstrap replicates supporting the monophyly of that clade.

The bootstrapping method consists of two main steps. The first includes the generation of new datasets

using randomly sampled columns of characters. The total number of positions of all datasets is the

same. The second step is the computation of a number that gives the proportion of times a particular

branch appears in a tree (Bootstrap value) (BO05). A value of > 75% is regarded as good support

for the topology, a value of >95% is a desirable degree of confidence in the data..

23That is the tree with the highest score given some optimisation function
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Chapter 3

The Phylogeny Pipeline

The process of phylogenetic reconstruction consists of several steps of analysis. These steps are the

search for homologs for a given set of sequences (See Sec. 2.1), the alignment of these sequence (See

Sec. 2.3), the selection of conserved parts from the alignments (See Sec. 2.3.6), the construction of a

phylogenetic tree using either a supermatrix (See Sec. 2.5) or a supertree approach (See Sec. 2.6) and

recieving confidence in the data using e.g. bootstrapping (See Sec. 2.7.1). Each of these steps requires

the selection of a program - to perform the requested task - and its usage. The use of a scripting

languages like Perl1 allows the construction of a phylogenetic pipeline to automate this process of

phylogenetic reconstruction. This pipeline accepts a set of sequence, executes all steps of the analyis,

and - as a result - outputs a phylogenetic tree. It offers the use of different popular programs in each

analysis step, performes data conversions between the different programs (if needed), and handles the

organisation of the data throughout the analysis.

The following section explains the phylogenetic pipeline in detail.

1www.perl.org
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Figure 3.1: The first part of the phylogeny pipeline - the homology search. It takes a query sequences
from a file in a given directory structure, uses BLAST to perform the homology search against different
databases, parses the BLAST result and retrieves the best hits for each BLAST search. Additionally it
translates the resulting DNA sequences (in case of BLAST searches against dbEST and Trace Archive)
and organises the sequences in a directory structure.

3.1 Searching for Homologs

The phylogeny pipeline performs a homology search against public databases to find closely related

sequences from other organism given a sequence of interest. The results of the different BLAST

searches are postprocessed, the best hits obtained from public databases and saved in an appropriate

directory.

1. Selection of a Query Sequence

A good selection of a query sequence for a BLAST search is essential and can decide about success

in finding homologous sequences (See Sec. 2.1.2). Since we are looking for homologous sequences

of sponge genes, appropriate query sequences for the BLAST search are sponge sequences. The
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pipeline needs the query sequences organised in a directory structure like Fig. 3.2. Depending on

Figure 3.2: The data organisation needed for the first step of the analysis - the homology search. Each
subdirectory of the directory “Data” contains either an alignment file or a single sequence file. These
can be used as a query sequence for the BLAST searches.

the type of sequence in the directories, the pipeline can either update an existing dataset - given

an alignment file - or create a new dataset - given single sequence file. This is done by either

parsing the alignment for an appropriate candidate sequence or just using the single sequence

as a query sequence.

2. BLAST

Three different databases can be blasted to establish a large Taxon Sampling. These databases

are nr (non-redundant) (See Section 2.1.1.1), dbEST (See Section 2.1.1.2), and a local database

created from a Trace file for the Organism Reniera (See Section 2.1.1.3). For each database

different versions of BLAST are needed to perform the search.

Blasting the different databases

GenBank (nr and dbEST ) offers a nice tool to submit BLAST searches to the NCBI servers and

obtain the results after the search. This tool is called netblast2 and can be used given the type

of BLAST program “-p”, the query sequence “-i”, the output file “-o” and all other parameters

BLAST uses.

blastcl3 -p blastn -i seq.txt -d dbEST -o n_refm.out

Start a remote BLAST Search

The third database can be created locally. The Trace file can be obtained from the Trace archive

(Trab) and the tool blastdb used to convert the fasta file into a BLAST database. Different

BLAST programs

Since dbEST and the local Trace database consist of nucleotide sequences, the BLAST program

tblastn performes a protein query against a tranlated nucleotid database in a six reading frames.

2http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/netblast.html
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In the case of searching against the database nr the program blastp will perfom a protein query

against a protein database.

3. Postprocessing the BLAST results

All results - either recieved from NCBI via netblast or from the local BLAST search - will

be temporarely stored and parsed using special BLAST modules offered by the programming

language Perl and its extension Bioperl3.

The program considers only the best hits for each organism as a homologous sequence. The next

step is to obtain the sequences from GenBank (nr and dbEST) or from the local Trace file. The

sequences can be obtain from the Trace file or using Bioperl from GenBank. E.g. the following

command retrieves the protein sequence for the RAS-related protein P23 (Rattus norvegicus,

Acession number: gi|171001) from “genbank” in “fasta” format:

perl -MBio::Perl -e ’ #Use Module Bio::Perl and execute command

$database="genbank"; #Search at GenBank

$id="gi|1710001"; #The accession number of the sequence

$format="fasta"; #The sequence in fasta format

$sequence=get_sequence($database,$id); #Retrieve sequence

write_sequence(">-",$format,$sequence)’; #Print to STDOUT

Retrieve a Sequence from the Database

Since two out of three BLAST searches will be performed against translated nucleotid databases,

the best BLAST hits have to be translated according to the right reading frame from the BLAST

result. This is done using the program transeq from the EMBOSS package (RLB00).

4. Set of Homologous Genes

Each best BLAST hit for each organism and each gene is saved in a single file. The name of

the file correspondes to the database searched and the name of the organism and is saved in the

directory with the name of the gene the sequence describes (See Fig. 3.3).

3.2 The Analysis of the Data

3http://www.bioperl.org/wiki/BLAST
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Figure 3.3: The directory structure of after the search for homologous sequences. Based on the initial
directory structure in Fig. 3.2 the subdirectories now contain the query sequences and the homologous
sequences found by BLAST.

The dataset is complete, homologous sequences to the query sequences have been found, and the

analysis of the evolutionary relatedness can start. The result will be a phylogenetic tree.

The data analysis consists of several steps:

1. Sequence Alignments

The query sequence and the homologous sequences of each gene will be merged into a single file.

This file can be input for several alignment programs. These programs are ClustaW, Dialign,

T-Coffee and Muscle (See Sec. 2.3). The alignment programs will take the input files and and

arrange the sequences to identify regions of similarity that may be evolutionary related.

The idea of using different programs is that it will broaden the scope of analysis. The results

will be compared at the end. If all data contain the same statement about evolutionary history,

then this an additional factor of convidence of the data.

2. Postprocessing

The program Gblocks (See Sec. 2.3.6) takes alignments and delete parts that are not useful for

further phylogenetic analysis. The deleted parts contain either too less or too much phylogenetic

information. A side-effect is that shorter alignments reduce the computational complexity the

analysis.

3. Supertree / Supermatrix methods

There are two popular approaches for phylogenetic analysis of multiple gene sets. These are the

supertree and the supermatrix approach.

• Supertree

In the case of supertree analysis, the alignments - foreach alignment method and foreach

gene separately - are taken, the adequate evolutionary model selected using the program

Modelgenerator (AZP05) 4 and phylogenetic methods will be used to infer the best tree

4Note that this step done manually by the user, because it requires the use of the webinterface at
http://www.cs.nuim.ie/distributed/multiphyl.php
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Figure 3.4: The second part of the workflow of the phylogeny pipeline. All sequences for each gene are
concatenated to carry out the alignment process using different programs. Evolutionary models are
estimated for the complete and the alignments containing only conserved parts (selected by Gblocks).
The analyis can then be finished with the Supertree or the Supermatrix approach.

according to some optimality criterion. The different programs are MrBayes, PhyloBayes,

PHYML and RAxML.

The resulting tree files will then be concatenated to a single tree file for the final supertree

construction using the program clann (cla).

• Supermatrix

The Supermatrix approach starts with the concatenation of the alignment into a super-

matrix using Scafos, a program “for selection, concatenation and fusion of sequences for

phylogenomics” (RREP07)5. Foreach single alignment in the supermatrix the best model

of protein evolution will be estimated using Modelgenerator via a webinterface6 (Kea06).

The supermatrix along with the a list of protein evolution models serve as an input for

5This step is also done manually, because the user interface of scafos offers complex functionality
6http://www.cs.nuim.ie/distributed/multiphyl.php
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the final phylogenetic analysis, which will be carried out using the programs MrBayes,

PhyloBayes, PHYML, and RAxML.
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3.3 The Final Directory Structure

Phylogenetic analysis are complex tasks. They include several points where the researcher have to

take a closer look on the data to evaluate them. So a great interest is to design a directory structure

that allows the researcher to easily find the results from the different analyses and evaluate them (See

Fig. 3.5).

Figure 3.5: The directory structure after the phylogenetic analysis has completed. The “Data” branch
contains all sequence data after the homology search, the“Prot”branch is used if the protein sequences
are to be analysed, the “DNA” branch for DNA sequences. The subbranches in the “Prot” directory
inherit several user defined datasets. Each of which contains the full sub structure including applied
alignment and phylogeny methods.

The directory structure is designed to reflect a straighforward run of the pipeline. E.g. The re-

searcher wants to view the alignments created with Clustalw for his dataset “fish”, he just has to

follows the path

/prot/fish/clustalw/sequences/
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or the researcher wants to take a look at the phylogenetic tree for the gene “catalase” from his dataset

“human” created with the phylogeny method RAxML and Muscle as the multiple sequence alignment

program we will find it in

/prot/human/muscle/trees/raxml/
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3.4 The User Interface

In the following we will shortly describe how the user can use the phylogeny pipeline to carry out a

complete analysis or just single analysis steps.

3.4.1 The Command line tool

The command line tool provides simple access to the full functionality of the program. A straighforward

run of the pipeline includes the following steps: Homology Search, Construction of Multiple Sequence

Alignments, Selection of Conserved Regions from the Alignments, and Phylogenetic Methods.

Figure 3.6: The different steps of the phylogenetic analysis (left) and the name of the corresponding
programs (right). Note that the selection of conserved regions of alignments (using Gblocks) is optional.

Fig. 3.6 gives an overview of the different programs related to the different steps of the analysis:

The user can start a complete analysis or can enter the analysis at every step. The documentation for

all programs can be found in the appendix (See App. A.2).
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3.4.2 The Graphical User Interface (GUI)

A GUI was developed using the Perl extension TK 7. This GUI allows the use the phylogeny pipeline

without any knowlegde of the unix command line. All available parameters for the different programs

of the pipeline can be entered and a help function is available. A screenshot of the GUI is in Fig. 3.7.

Figure 3.7: The screenshot of the GUI of the phylogenetic pipeline. The GUI offers the access to all
steps of the phylogenetic analysis, including the selection of a root directory (required for each analysis
step) and analysis-dependent parameters (e.g. e-value with the homology search).

7http://www.perltk.org/
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Chapter 4

The Dataset

The right selection of taxa and genes is essential for getting reliable results. For that reason, we will

use two existing datasets as a basis and update these so that they fit our goal of analysis. These

datasets were used in studies from Rokas (RKC05) and Baurain (BBP07)1 The interest of Rokas was

the investigation of metazoa at the base of the metazoan tree and within protostomes. He selected

metazoans and closely related eukaryotes including representatives from choanoflagellates, poriferans,

cnidarians, platyhelminths, priapulids, annelids, mollusks, arthropods, nematodes, urochordates and

vertebrates (RKC05). Rokas used a large dataset, but his taxon sampling and the selection of a

model of evolution lead to misleading results (BBP07). Baurain updated this dataset to decrease the

possibility of these errors. He extended the dataset both in the number of genes and in the number of

taxa.

The goal of our study is to contribute to answering the question if the phylum porifera - with

its three subphyla demospongiae, hexactinallida, and calcarea - is monophyletic or - as some studies

using molecular markers suggest - paraphyletic (See Sec. 1.3). To answer this question additional

homologous sequences from phylum porifera were added to the existing dataset by BLAST searches.

The Rokas dataset is not publicly available, but there is a list of genes which can be used to search for

homologs. The Baurain dataset already includes sponge sequences from two organisms: Suberites and

Reniera (both demospongiae). Taking one of these sponge sequences we will search for homologous

sponge sequences. The goal here is to get at least one sequences for each of the three poriferan

classes. The Baurain dataset comprises only selected genes. We will add additional genes from public

databases to increase the number of sponge sequences. Additionally we will create a completely new

dataset to extend the Taxon Sampling. This will be done getting all the sequences for phylum porifera

from GenBank.

1These dataset are called Rokas dataset and Baurain dataset hereafter.
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Figure 4.1: The combined datasets from Rokas, Baurain and the manually generated dataset from
GenBank. The intersection includes genes with sponge sequences from all poriferan groups available
(marked with an X ).

The most interesting subset of these datasets consists of all genes with at least one sequences from

each poriferan class available (See Fig. 4.1), because the goal of our study is to clarify the relationship

of this three classes and a tree with sequences covering just two of the three classes is not informative.
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Results

In this chapter we present the results from our phylogenetic analysis to help to answer the question if

sponges are a monophyletic or paraphyletic group. We developed a phylogenetic pipeline as described

in Chapter 3 and used it to carry out the different steps of the analysis. If not mentioned otherwise

all steps of the analysis were performed using default parameters.

5.1 Data Assembly

5.1.1 Construction of dataset

We started our analysis with the Baurain dataset. The dataset from Baurain contains 133 genes

(12,942 amino acid positions) from 57 taxa (See App.). Each of the protein alignments from the

Baurain dataset (BBP07) was updated using our phylogenetic pipeline. All fungi sequences were

excluded from the analysis, because they are not in the focus of our study of sponges. For each gene,

a sponge sequence (Suberites, Reniera) or the sequence closest to the sponges (Monosiga ovata) was

selected from the protein alignment from the Baurain dataset to query the non-redundant (nr) and

the EST database (dbEST ) using BLAST. To find an e-value and a substitution matrix that fits our

data best, iterative BLAST searches were performed. According to the recommendation to interpret

e-values (See Sec. 2.1.2) we used e-values ranging from 1e − 10 to 1e − 40. The tested subsitution

matrices were BLOSUM62 and PAM250. BLOSUM62 is the standard matrix for BLAST searches,

PAM250 performes well with distant sequences. For each e-value and substitution matrix a single

dataset was created (See Tab. 5.1).

5.1.2 Gene Selection

For each dataset, only those genes were kept in the analysis further with at least one sequences for

each sponge group available. This drastically reduced the number of genes in the study from 133 to

10-15 genes. An overview of the genes used in this study is in App. A.2.

After the evaluation of the BLAST searches we decided to continue the analysis with the two most

different datasets for each substitution matrix to reduce the computational complexity. These are

ds 10 and ds 40 for the substitution matrix BLOSUM62 and ds 10 pam and ds 40 pam for PAM250,

respectively.
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Table 5.1: Overview of the different dataset, e-values, substitution matrices used for the homology
search and resulting number of genes.

Dataset E-Value Substitution Matrix Number of Genes

ds 10 1e-10 BLOSUM62 15
ds 20 1e-20 BLOSUM62 13
ds 30 1e-30 BLOSUM62 10
ds 40 1e-40 BLOSUM62 9

ds 10 pam 1e-10 PAM250 13
ds 20 pam 1e-20 PAM250 10
ds 30 pam 1e-30 PAM250 7
ds 40 pam 1e-40 PAM250 5

5.1.3 Construction of gene alignments of single genes

Alignments were constructed using ClustalW, Muscle, T-Coffee, and DiAlign1. Ambiguously aligned

regions were automatically deleted with Gblocks (Cas00).

5.1.4 Chimerical Operational Taxonomic Units (OTUs)

To increase the amount of data, we created chimerical sequences by merging sequences from closely

related taxa using the program SCAFOS. Sequences are incorporated into the chimerical sequence in

descending order of sequence length as shown in Fig. 5.1.

Figure 5.1: Sequence parts are incorporated from longest to shortest. Selected parts are coloured in
blue. The chimerical sequences is the concatenated of the selected parts of the sequences.

Chimeric OTUs have been named after the inclusive species that was most represented (See Tab.

A.3).

5.2 Phylogenetic and Evolutionary Analyses

5.2.1 Selection of Evolutionary Model

The evolutionary models for each gene were estimated using the program ModelGenerator2. Model-

Generator selected RtREV (DRMG02) to be the best-fit amino acid substitution model for all genes.

1Since the alignments do not differ significantly, only ClustalW alignments will be considered in the following.
2http://www.cs.nuim.ie/distributed/multiphyl.php
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5.2.2 Creating different datasets by excluding taxa

For each dataset we created a reduced dataset, including only those taxa present in > 50% the genes.

Those dataset get the postfix “red” (for reduced). E.g. The reduced dataset from ds 10 is ds 10 red.

This reduced the number of sponge taxa to four. These taxa are Suberites sp., Reniera sp.3 (both

Demospongiae), Aphrocallistes vastus (Hexactinellida), and Leucosolenia sp. (Calcarea).

5.2.3 Supermatrix

The gene alignments were concatenated into a supermatrix using SCAFOS.

Table 5.2: The number of amino acid positions, genes, OTUs with the different datasets, and a
reference to a more detailed statistic of each dataset.

Dataset #AA positions Number of Genes Number of OTUs Full Statistics

ds 10 12526 15 68 App. A.4
ds 10 red 12526 15 48 App. A.5
ds 40 7278 9 68 App. A.6
ds 40 red 7278 9 47 App. A.7
ds 10 pam 8906 13 68 App. A.8
ds 10 pam red 8906 13 43 App. A.9
ds 40 pam 4655 5 68 App. A.10
ds 40 pam red 4655 5 45 App. A.11

The Maximum likelihood analysis were performed using the parallel versions of PHYML (GG03) and

RAxML (Sta06). Support values for maximum likelihood analysis were obtained after 100 bootstrap

replicates.

Bayesian Inference was performed using PhyloBayes (phya) and the parallel version of MrBayes

(ADHR04). Trees were sampled every 1000 generation to get posterior probabilities. The burn-in

value was set to 300 trees. This is the level at which all variable parameters reached a stable value

in a preliminary run. The total number of generations was set to 300,000 generations. Four parallel

chains (one cold and three heated) were used to exhaustively search the tree space.

All analysis were done using the RtREV model of amino acid evolution, except for the analysis

using PhyloBayes. Here we used the CAT model (LP04) in a MCMC framework.

5.2.4 Supertree

The single gene trees were inferred using PHYML with the RtREV model of amino acid evolution.

The concatenated trees were then used to carry out the supertree analysis using the program clann

and the supertree methods dfit (cla) and MRP (See Sec. 2.6.2).

3Note that the term Reniera sp. is not used any more, instead this species is called Amphimedon queenslandica
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5.3 Phylogenetic Trees

In the following section we present our resulting phylogenetic trees. They are presented in a way to

show the effects of different parameters and settings we applied throughout the analysis. The effects

we investigated were:

• The reduction of datasets by setting a cut-off value for missing data and its effect on the resulting

phylogenetic tree (See Fig. 5.2 and Fig. 5.3).

• The use of differente-values and their effect on the resulting phylogenetic tree (See Fig. 5.4 and

Fig. 5.5).

• The use of different substitution matrices for the homology search and their effect on the resulting

phylogenetic tree (See Fig. 5.6).

The taxa names have been prefixed with the a two-letter code corresponding to the taxonomic group

they are a part of (AN = Annelids, AR = Arthropoda, CH = Choanoflagellata, NE = Nematodes,

MO = Mollusca, PL = Plathelminthes, PO = Porifera, UR = Urochordates, VE = Vertrebratae).

The taxa names of the sponges have one additional character showing to which of the three poriferan

groups they belong (D = Demospongia, H= Hexactinellida, and C = Calcarea).
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Figure 5.2: The effects of using a cut-off value to exclude taxa lacking sequences for more than 50% of the genes. On the left is the tree build
with the whole dataset (ds 10), on the right is the tree build with the reduced dataset (ds 10 red).
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Figure 5.3: The effects of using a cut-off value to exclude taxa lacking sequences for more than 50% of the genes. On the left is the tree build
with the whole dataset (ds 40), on the right is the tree build with the reduced dataset (ds 40 red).
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Figure 5.4: The effects of different substitution matrices for the homology search. On the left side the tree for the BLOSUM62 (dataset
ds 10 red), on the right side the tree for the PAM250 matrix (ds 10 pam red).
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Figure 5.5: The effects of different substitution matrices for the homology search. On the left side the tree for the BLOSUM62 (dataset
ds 40 red), on the right side the tree for the PAM250 matrix (ds 40 pam red).
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Figure 5.6: The effects of different e-values for the Homology search and their effect on the resulting trees. On the left side the tree inferred
from the dataset ds 10 red, on the right side the tree inferred from the dataset ds 40 red.
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Chapter 6

Discussion & Outlook

The phylogenetic pipeline (See Sec. 3) has been successfully implemented and used to carry out a

phylogenetic analysis.

The goal of this analysis was to support one out of two hypotheses about the history of sponges:

Either that sponges are a monophyletic or paraphyletic group (See Sec. 1.3).

The results we achieved so far do not clearly corroborate one of these hypotheses. Due to the limited

amount of time and the long runtime of the phylogeny programs for bayesian inference (MrBayes and

PhyloBayes) and for maximum likelihood analysis (RAxML), our results are based on the maximum

likelihood analysis using PHYML only.

PHYML uses the heuristic NNI (See Sec. 2.4.4.1) to search tree space and trees constructed with

this method usually have lower support values (BBP07) than other methods. Therefore, our results

should be treated with caution.

The inferred trees from the reduced datasets all grouped the sponges together (except for Reniera sp.

whose role is phylogeny is doubtful (HvS06)) and this may be seen as a first hint to the monophyly of

sponges. A larger taxon sampling and the use of other methods will give more evidence for one of the

two hypotheses. Our results also show evidence for the monophyly of Silicea (Demospongiae + Hex-

actinellida), since the sponges Suberites sp. (Demospongia) and Aphrocallistes vastus (Hexactinellida)

were grouped together in each tree (See Sec. 5.3).

The main focus of this study was to decide whether the sponges are mono- or polyphyletic. But

the fact the we used different parameters and methods throughout the analysis gives room for further

insights:

• The results from the iterative search for a best-fit e-value and an appropriate substitution matrix

(See Sec. 5.1) suggests that the choice of an e-value in the range of 1e-10 - 1e-40 (See Fig. 5.6)

as well as the choice of either BLOSUM62 or PAM250 as a substitution matrix (See Fig. 5.5)

does not influence our results significantly.

The choice of a lower e-value (1e-40) resulted in a more stringent phylogenetic tree including

sequences more likely to be homologs, but with the a general lower resolution. The basal part

of the tree remained unchanged with different substitution matrices with the dataset ds 10 (See

Fig. 5.4) and the same groups of organisms were clustered together to form monophyletic clades

in both trees. Even the support values were almost equal.
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• The results from different alignment methods (See Sec. 5.1.3) on the same dataset do not differ

significantly. As suggested (RK03), the choice of an alignment method is not essential for the

success of a phylogenetic analysis.

• According to (Wie06) taxa with data present in less than 50% of the genes can be excluded from

further analysis. We can support this suggestion. After the exclusion of these taxa, we could

reduce artefacts (e.g. the vertebrate silurana clustered with the sponges in Fig. 5.2) in the tree

and received higher support values for the different clades (See Fig. 5.3 for the effects of taxa

exclusion on dataset ds 40 red). The more taxa we excluded the more stringenter our resulting

phylogenetic tree became. E.g. the complete dataset ds 10 included an artefact, the cnidaria

Arcopora palmata clustered with the sponges. After the exclusion we could find the sponges

grouped together and also the monophyly of other groups (e.g. the arthropods) reconstructed

(See Fig. 5.2).

Although we could not clearly answer the question of the monophyly of the sponges, we found some

evidence for it. This evidence will be the basis for further analyses.

On the one hand, we are waiting for the three other phylogeny programs to finish and on the other

hand we will extend our dataset to continue our study with an increased taxon sampling and more

phylogenetic signal included.

The results from RAxML and the Bayesian Inference programs (MrBayes and PhyloBayes) should

give us more information whether our data include enough phylogenetic information to answer our

initial goal of the study - are sponges mono- or polyphyletic? The reason for this is that MrBayes

and RAxML generally perform well and are more accepted in the phylogeny community, because they

use improved heuristics for searching the tree space and that improves the likelihood of finding the

best tree in tree space and therefore getting better results. Additionally, PhyloBayes uses the CAT

model which showed to perform well by obtaining a better statistical fit, and alleviating phylogenetic

artefacts, due to long branch attraction (LP06).

If the taxon sampling we used is to sparse, we will extend the existing dataset with the genes from

Rokas and genes from public databases as described in Sec. 4 to increase the number of genes and

taxa in the study. Additionally we will include data from ongoing sequencing projects. In addition to

the supermatrix approach (See Sec. 2.5), we will also focus on the supertree approach (See Sec. 2.6)

to improve the quality of the results and to find out if its useful for our analysis.
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Chapter 7

Conclusion

In this thesis we presented a phylogenetic pipeline for the use in phylogenetic analyses. The pipeline

covers all important parts of a complete phylogenetic analysis: The search for homologous sequences

(given a sequence of interest), the construction of sequence alignments to bring evolutionary related

parts of the sequence in correspondence, and the application of two approaches to construct a phylo-

genetic tree showing the evolutionary relatedness of organisms.

We showed the practical use of this pipeline with a concrete example. The application of the pipeline

to find a solution for the question whether the most recent common ancester and all descendants of

the sponges are sponges (monophyly) or not (paraphyly). We used our pipeline to carry out all steps

required for this phylogenetic analysis. The data and methods we used could not clearly answer this

question, but indicates that the use of more data an additional methods could lead to an answer of

this fundamental question in sponge history.
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Appendix A

Appendix

A.1 The Baurain Data Set

Table A.1: Summary of the frequency of missing data per taxa used by Baurain

OTU # of AA present % of AA missing

Acanthoscurria gomesiana 9770 24.5

Acropora millepora 7998 38.2

Apis mellifera 12812 1.0

Argopecten irradians 11431 11.7

Biomphalaria glabrata 11096 14.3

Blastocladiella emersonii 12415 4.1

Bombyx mori 12935 0.1

Boophilus microplus 11542 10.8

Caenorhabditis elegans 12936 0.0

Capitella sp. 11718 9.5

Ciona intestinalis 12879 0.5

Ciona savignyi 12878 0.5

Crassostrea virginica 11893 8.1

Cryptococcus neoformans 12911 0.2

Danio rerio 12795 1.1

Daphnia pulex 12901 0.3

Dugesia ryukyuensis 11778 9.0

Echinococcus granulosus 11242 13.1

Eptatretus burgeri 12502 3.4

Euprymna scolopes 10346 20.1

Fasciola hepatica 5299 59.1

Gallus gallus 11371 12.1

Glomus intraradices 6210 52.0

Helobdella robusta 11631 10.1

Homarus americanus 10339 20.1

Homo sapiens 12942 0.0

Hydractinia echinata 11868 8.3

Hydra magnipapillata 12938 0.0
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Hypsibius dujardini 10910 15.7

Ixodes scapularis 10476 19.1

Litopenaeus vannamei 12471 3.6

Locusta migratoria 12336 4.7

Lottia gigantea 8195 36.7

Lumbricus rubellus 12422 4.0

Molgula tectiformis 12715 1.8

Monosiga ovata 12441 3.9

Monosiga brevicollis 11081 14.4

Nasonia vitripennis 10284 20.5

Nematostella vectensis 12030 7.0

Neocallimastix patriciarum 9841 24.0

Petromyzon marinus 12035 7.0

Platynereis dumerilii 6567 49.3

Proterospongia sp. 7293 43.6

Reniera sp. 11671 9.8

Rhizopus oryzae 12888 0.4

Saccharomyces cerevisiae 12910 0.2

Schistosoma mansoni 12770 1.3

Schistosoma japonicum 12364 4.5

Schizosaccharomyces pombe 12906 0.3

Schmidtea mediterranea 12781 1.2

Spodoptera frugiperda 10467 19.1

Suberites domuncula 9773 24.5

Tribolium castaneum 12934 0.1

Ustilago maydis 12908 0.3

Xenopus tropicalis 12942 0.0

Xiphinema index 11010 14.9

Yarrowia lipolytica 12504 3.4

mean 11426 11.7

A.2 The Phylogeny Pipeline - Documentation

The documentation of the single programs of the phylogenetic pipeline as described in Sec. 3.
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start.pl

start.pl - This script starts several steps of the phylogenetic analysis

SYNOPSIS

start.pl [-m] [-d] (-t) (-n) (-a) (-b) (-u)

Options

-m :Method:

h :Homology search

d :Dataset selection

m :Multiple Alignment

g :Selection of Conserved Regions

p :Reconstruction of Phylogeny

-d :Root Directory of Analysis

-t :Type of Database Search: (n)r, (e)st, (t)race or (a)ll

-n :Blast-Database

-p :Phylogeny Method: (p)hyml, (r)axml, (m)rBayes, or (a)ll

-s :Type of Dataset

-a :Alignment Methods: (c)lustalw, (t)-coffee, (d)ialign, (m)uscle

-b :Bootstrap option

-u :Update existing dataset

DESCRIPTION

This is the starting script for the phylogeny pipeline. All steps of the analysis can be started using

this script. For detailed information see the describtion of the executed programs.

An Example

Homology Search: perl start.pl -m h [-d] [-t] (-e) (-n) -u

Dataset Selection: perl start.pl -m d [-d] [-s]

Multiple Alignment: perl start.pl -m m [-d] [-a]

Selection of Conserved Regions: perl start.pl -m g [-d]

Reconstruction of Phylogeny: perl -m p [-d] [-p] (-b);

Page 79



A.2 The Phylogeny Pipeline - Documentation Appendix A Appendix

start blast.pl

start blast.pl - A script for starting a batch of Blast searches.

SYNOPSIS

start_blast.pl (-e) [-d] [-u] (-t) (-e) (-n)

-e E-value

-d Root Directory of Analysis (with subdirectories containing query sequences)

-u (u)pdate existing dataset

-t Type of Database to search ((n)on-redundant, db(e)st, (t)race or (a)ll)

-n Name of Blast-Database (for Blast searches against traces)

DESCRIPTION

This script starts a batch of Blast searches. The script searches the subdirectories of ”data” for fasta

files. For each subdirectory (for each gene) the first sponge entry will be used as the query sequence

and a Blast search with the specified E-Value against the specified database(s) is performed. The

Blast results are parsed by appropriate parser scripts.

An Example

perl start_blast.pl -e 1-e20 -d data -t n
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Parse blast est.pl

parse blast est.pl - A Parser for Blast outputs from dbEST searches

SYNOPSIS

parse_blast_est.pl [-i] (-f)

-i Seaching for Sponge hits ?(1=yes,0=no)]

-f Name of Gene

DESCRIPTION

This script parses blast outputs and saves each best hit per organism in a seperate file.

The parser takes one hit for each organism and retrieves the sequence from dbEST. Each single best

blast hit is given the prefix ”po”(Porifera) or ”out”(Outgroup) and then stored in a directory ”Name

of Gene”.

An Example

cat blastresult.blast | parse_blast_est.pl -i 1 -f catalase

The blast result in blastresult.blast is input to the parser. Each single best blast hit is given a prefix

”po”(Porifera) and then stored in the directory ”catalase”.
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Parse blast nr.pl

parse blast nr.pl - A Parser for Blast outputs from nr (non-redundant) searches

SYNOPSIS

parse_blast_nr.pl [-i] (-f)

-i Seaching for Sponge hits ?(1=yes,0=no)

-f Name of Gene

DESCRIPTION

This script parses blast outputs and saves each best hit per organism in a seperate file.

The parser takes one hit for each organism and retrieves the sequence from GenBank. Each single

best blast hit is given the prefix ”po”(Porifera) or ”out”(Outgroup) and then stored in a directory

”Name of Gene”.

An Example

cat blastresult.blast | parse_blast_nr.pl -i 1 -f catalase

The blast result in blastresult.blast is input to the parser. The parser takes one hit for each organism

and gets the sequence from dbEST. Each single best blast hit is given a prefix ”po”(Porifera) and then

stored in a directory ”catalase”.
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Parse blast trace.pl

parse blast trace.pl - A Parser for Blast outputs from local Trace Archive searches

SYNOPSIS

parse_blast_trace.pl [-i] (-f)

-i Seaching for Sponge hits ?(1=yes,0=no)

-f Name of Gene

DESCRIPTION

This script parses blast outputs and saves each best hit per organism in a seperate file.

The parser takes one hit for each organism and gets the sequence from the local Trace file. Each

single best blast hit is given the prefix ”po”(Porifera) or ”out”(Outgroup) and then stored in a directory

”Name of Gene”.

An Example

cat blastresult.blast | parse_blast_trace.pl -i 1 -f catalase

The blast result in blastresult.blast is input to the parser. Each single best blast hit is given a prefix

”po”(Porifera) and then stored in a directory ”catalase”.
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Calc protein alignments.pl

calc protein alignments.pl - A script for starting a batch of multiple alignments

SYNOPSIS

calc_protein_alignment.pl [-d] (-m)

-d Dataset (organised in a directory with subdirectories containing the sequence files)

-m Alignment method: (c)lustalw, (d)ialign, (t)-Coffee, (m)uscle or (a)ll

DESCRIPTION

This script starts a batch of multiple alignments. Given a dataset and an alignment method, the script

first concatenated all sequences from one subdirectory of the dataset to one fasta file and executes the

selected multiple alignment method. The results are saved in a subdirectory of the method that was

applied and the dataset that was used.

An Example

perl calc_protein_alignments.pl -d fish -m t

Calculates T-Coffee alignments for all sequences of the dataset ”fish”.
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Compute trees.pl

Compute trees.pl - A script for starting the reconstruction of phylogeny for a set of alignments

SYNOPSIS

compute_trees.pl (-d) (-m) [-b]

-d Dataset (organised in a directory with subdirectories containing the sequence files)

-m Phylogeny method: (p)hyml, (r)axml, (m)rbayes

-b Switches the bootstrap option on/off

DESCRIPTION

This script starts the reconstructon of phylogeny for a set of alignments. Each alignment is first

converted into phylip and nexus format. Given a dataset and a phylogeny method, the script executes

the selected phylogeny method. The results are saved in a subdirectory of the method that was applied

and the dataset that was used.

An Example

perl compute_trees.pl -d fish -m p -b 1000

Calculates the PHYML tree and bootstraps them with 1000 replicates for all alignments of the

dataset ”fish”.
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Compute supertree.pl

compute supertree.pl - A script for the calculation of a supertrees given a set of gene trees.

SYNOPSIS

compute_supertree.pl -d -m

-d :Directory containing the source trees

-m :Supertree method (avcon, mrp, or dfit)

DESCRIPTION

The script concatenates all source trees from the directory into a single file and starts the the supertree

method using the program clann.

An Example

perl compute_supertree.pl -d fish -m a

Computes a supertree with the method ”avcon” from all source trees in the directory ”fish”.
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Compute supermatrix.pl

compute supermatrix.pl - A script for the calculation of a phylogenetic tree from a supermatrix

SYNOPSIS

compute_supermatrix.pl [-d] (-m)

-d Dataset (organised in a directory with subdirectories containing the sequence files)

-m Phylogeny method: (p)hyml, (r)axml, (m)rbayes

-b Switches the bootstrap option on/off

DESCRIPTION

Given a directory, the script starts the analysis of the supermatrix - contained in the directory - with

the the given phylogeny method.

An Example

perl compute_supermatrix.pl -d fish -m m

Constructs a phylogenetic tree of the supermatrix from the directory ”fish” using the program

mrbayes.
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A.3 Our Dataset

A.3.1 List of Genes used in the Study

After the reduction of the dataset (as described in Sec. 5.1.2)

Table A.2: Overview of the genes used in this study. In the first column are the abbreviations of the
gene names and in the second colum their full scientific names.

Abbr. Full Gene Name

cct-A T complex protein 1 alpha subunit
cct-B T complex protein 1 beta subunit
cct-D T complex protein 1 delta subunit
cct-E T complex protein 1 epsilon subunit
cct-G T complex protein 1 gamma subunit
cct-Z T complex protein 1 ? subunit
ef2-EF2 Elongation factor EF2
ef2-U5 Elongation factor Tu family U5 snRNP specific protein
hsp70-E Heat shock 70kDa protein form E
hsp70-mt Heat shock 70kDa protein, mitochondrial form
hsp70-SSE Heat shock 70kDa protein subfamily SSE1
if2g Eukaryotic translation initiation factor 2g
mcm-B Minichromosome family maintenance protein 2
rpl5 60S ribosomal Protein 5
rps2 40S ribosomal Protein 2
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A.3.2 List of Chimerical Operational Taxonomic Units OTUs

Table A.3: Overview of the chimerical operational taxonomic units as used in the study. The most
present species are in bold letters.

Chimeric OTU Species included

Acropora millepora Acropora millepora , Acropora palmata, Montastraea faveolata
Argopecten irradiens Argopecten irradiens, Pecten maximus
Biomphalaria glabrata Biomphalaria glabrata, Aplysia californica, Lymnaea stagnalis
Boophilus microplus Boophilus microplus, Rhipicephalus appendiculatus
Daphnia magna Daphnia magna, Daphnia pulex
Dugesia japonica Dugesia japonica, Dugesia ryukyuensis
Eptatretus burgeri Eptatretus burgeri, Myxine glutinosa
Helobdella robusta Helobdella robusta , Haementeria depressa
Homarus americanus Homarus americanus, Pacifastacus leniusculus
Homo sapiens Homo sapiens , Canis familiaris, Mus musculus, Bos taurus, Rattus norvegicus
Hydractinia echinata Hydractinia echinata, Podocoryne carnea
Hypsibius dujardini Hypsibius dujardini, Macrobiotus islandicus, Richtersius coronifer
Litopenaeus vannamei Litopenaeus vannamei, Penaeus monodon, Marsupenaeus japonicus
Lumbricus rubellus Lumbricus rubellus, Eisenia andrei
Molgula tectiformis Molgula tectiformis, Halocynthia roretzi
Platynereis dumerilii Platynereis dumerilii, Nereis virens
Xenopus laevis Xenopus laevis, Xenopus tropicalis
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A.3.3 Statistics of the different Datasets

A.3.3.1 ds 10

Table A.4: Overview of the genes used in dataset ds 10, their lengths and the number of OTUs.

Name of Gene Begin End Length Number of OTUs

cct-A 1 704 704 44
cct-B 705 1250 546 47
cct-D 1251 1839 589 46
cct-E 1840 2426 587 46
cct-G 2427 3078 652 47
cct-Z 3079 3736 658 44
ef2-EF2 3737 4686 950 55
ef2-U5 4687 6052 1366 38
hsp70-E 6053 6876 824 54
hsp70-SSE 6877 8934 2058 44
hsp70-mt 8935 9870 936 55
if2g 9871 10422 552 44
mcm-B 10423 11684 1262 36
rpl5 11685 12030 346 53
rps2 12031 12526 496 52
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Table A.5: Overview of the genes used in dataset ds 10 red, their lengths and the number of OTUs.

Name of Gene Begin End Length Number of OTUs

cct-A 1 704 704 42
cct-B 705 1250 546 45
cct-D 1251 1839 589 43
cct-E 1840 2426 587 43
cct-G 2427 3078 652 43
cct-Z 3079 3736 658 41
ef2-EF2 3737 4686 950 48
ef2-U5 4687 6052 1366 36
hsp70-E 6053 6876 824 43
hsp70-SSE 6877 8934 2058 37
hsp70-mt 8935 9870 936 42
if2g 9871 10422 552 43
mcm-B 10423 11684 1262 35
rpl5 11685 12030 346 47
rps2 12031 12526 496 46

A.3.3.2 ds 40

Table A.6: Overview of the genes used in dataset ds 40, their lengths and the number of OTUs.

Name of Gene Begin End Length Number of OTUs

cct-B 1 546 546 47
ef2-EF2 547 1496 950 55
ef2-U5 1497 2862 1366 38
hsp70-E 2863 3686 824 54
hsp70-mt 3687 4622 936 55
if2g 4623 5174 552 44
mcm-B 5175 6436 1262 36
rpl5 6437 6782 346 53
rps2 6783 7278 496 52
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Table A.7: Overview of the genes used in dataset ds 40 red, their lengths and the number of OTUs.

Name of Gene Begin End Length Number of OTUs

cct-B 1 546 546 44
if2g 547 1098 552 44
mcm-B 1099 2360 1262 35
rpl5 2361 2706 346 47
rps2 2707 3202 496 47

A.3.3.3 ds 10 pam

Table A.8: Overview of the genes used in dataset ds 10 pam, their lengths and the number of OTUs.

Name of Gene Begin End Length Number of OTUs

cct-A 1 704 704 44
cct-B 705 1250 546 47
cct-D 1251 1839 589 46
cct-E 1840 2426 587 46
cct-Z 2427 3084 658 44
ef2-U5 3085 4450 1366 38
hsp70-E 4451 5274 824 54
hsp70-mt 5275 6250 976 55
if2g 6251 6802 552 44
mcm-B 6803 8064 1262 36
rpl5 8065 8410 346 53
rps2 8411 8906 496 52
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Table A.9: Overview of the genes used in dataset ds 10 pam red, their lengths and the number of
OTUs.

Name of Gene Begin End Length Number of OTUs

cct-A 1 704 704 39
cct-B 705 1250 546 42
cct-D 1251 1839 589 38
cct-E 1840 2426 587 40
cct-Z 2427 3084 658 40
ef2-U5 3085 4450 1366 34
hsp70-E 4451 5274 824 38
hsp70-mt 5275 6250 976 39
if2g 6251 6802 552 41
mcm-B 6803 8064 1262 34
rpl5 8065 8410 346 43
rps2 8411 8906 496 43

A.3.3.4 ds 40 pam

Table A.10: Overview of the genes used in dataset ds 40 pam, their lengths and the number of OTUs.

Name of Gene Begin End Length Number of OTUs

cct-B 1 546 546 47
ef2-EF2 547 1496 950 55
ef2-U5 1497 2855 1359 37
hsp70-E 2856 3679 824 54
hsp70-mt 3680 4655 976 55

Table A.11: Overview of the genes used in dataset ds 40 pam red, their lengths and the number of
OTUs.

Name of Gene Begin End Length Number of OTUs

cct-B 1 546 546 43
ef2-EF2 547 1496 950 45
ef2-U5 1497 2855 1359 35
hsp70-E 2856 3679 824 41
hsp70-mt 3680 4655 976 42
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