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Abstract

In this paper, we discuss a novel scoring scheme
for sequence alignments. The score of an align-
ment is defined as the sum of so-called weights of
aligned segment pairs. A simple modification of
the weight function used by the original version
of the DIALIGN alignment program turns out to
have a crucial advantage: it can be applied to
both, global and local alignment problems with-
out the need to specify a threshold parameter.

The alignment problem in
computational biology

Sequence alignment is one of the most important tools
of data analysis in molecular biology. Correspondingly,
the problem of developing computer programs that are
capable of automatically finding ‘biologically correct’
alignments, i.e. alignments reflecting the true biologi-
cal relationships between sequences, is one of the great
challenges in computational molecular biology.

It seems necessary to mention that this problem con-
sists of two parts: First, an appropriate scoring scheme
has to be defined by which the quality of different align-
ments of a given data set can be compared and evalu-
ated. Then, given such a scoring scheme, the second
part of the alignment problem is to find algorithms for
the construction of optimal or at least reasonable sub-
optimal alignments according to that scheme. This pa-
per is about the first part of the alignment problem.

The most popular scoring scheme for pairwise align-
ments was proposed in 1970 by Needleman and Wunsch
(Needleman and Wunsch 1970). Given a similarity ma-
triz consisting of similarity values for every possible pair
of individual residues, they defined the overall similar-
ity score of an alignment to be the sum of the similar-
ity values of the aligned residues minus a penalty for
every gap introduced into the alignment. Needleman
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and Wunsch also introduced a dynamic programming
algorithm which finds an optimal alignment according
to this criterion with reasonable computational costs.
A local version of the Needleman-Wunsch method was
proposed in 1981 by Smith and Waterman (Smith and
Waterman 1981).

Since then, the alignment problem has generally been
considered to be solved for pairwise alignments, and
most efforts in the field of sequence alignment focussed
on how to extend the Needleman-Wunsch method to
multiple alignments and on how to choose the un-
derlying parameters, especially the gap-penalty pa-
rameters (Fitch and Smith 1983, Vingron and Water-
man 1994). There are several ways of generalizing
the Needleman-Wunsch scoring scheme to the multi-
ple alignment (Altschul and Lipman 1989, Gotoh 1986,
Murata, Richardson, and Sussman 1985), and various
methods have been proposed for finding optimal or sub-
optimal multiple alignments according to these crite-
ria (Abdeddaim 1997, Carrillo and Lipman 1988, Feng,
Johnson, and Doolittle 1985, Thompson, Higgins, and
Gibson 1994, Tonges et al. 1996, Vingron and Argos
1991, Stoye, Moulton, and Dress 1997).

If the sequences are closely related, an optimal align-
ment in the sense of Needleman and Wunsch gener-
ally approximates the ‘biologically true’ alignment, and
alignment strategies based on this scoring scheme can
therefore be applied successfully to construct biologi-
cally plausible alignments. However, if one considers
distantly related sequences, there can be wide discrep-
ancies between biologically meaningful alignments on
the one hand and alignments with high Needleman-
Wunsch scores on the other hand. Therefore, align-
ment strategies based on the Needleman-Wunsch opti-
mization criterion often fail to produce acceptable align-
ments.

Segment-based alignment scores

Protein families are often characterized by a pattern
of more or less conserved domains. This may be the
result of functional and structural constraints during
divergent evolution or of so-called modular evolution,
for example by domain shuffling (Li 1997). Within
these motifs, insertions and deletions are relatively rare
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Figure 1: Non-consistent and consistent collections of diagonals (segment pairs). (A) and (B) represent non-consistent
collections of diagonals: In (A) the ‘F’ in the third sequence is assigned simultaneously to two different residues of
the first sequence. In (B) there is a ‘cross over’ assignment of residues. By contrast, (C) is a consistent collection
of diagonals: It is possible to introduce gaps into the sequences such that residues connected by diagonals are in
the same column of the resulting alignment (D). Residues not involved in any of the three diagonals are printed in

lower-case letters. They are not considered to be aligned.

events. Therefore, it makes sense to employ alignment
strategies based on comparing gap-free segments of the
sequences in question rather than on comparing single
residues.

Segment comparisons are successfully employed by
data base search tools such as BLAST (Altschul et al.
1990) and FASTA (Pearson and Lipman 1988). Ar-
gos and Vingron have developed a pairwise alignment
method where segment comparisons are used to re-
duce noise in the so-called comparison matriz (Argos
and Vingron 1990). Waterman has proposed a method
for multiple alignment based on consensus words of
a given length (Waterman 1986). The MATCH-BOX
program assembles alignments from bozes of segments
(Depiereux and Feytmans 1992, Depiereux et al. 1997).
The method allows for boxes of varying length. How-
ever, a pattern is reported only if it appears in all of
the sequences, and all segments within a box must have
the same length. The interactive program MACAW
composes multiple alignments from sequence segments
without these limitations (Schuler, Altschul, and Lip-
man 1991).

Recently, we proposed yet another alignment strategy
relying on segment comparison (Morgenstern, Dress,
and Werner 1996, Morgenstern et al. 1998). Align-
ments are composed of gap-free pairs of sequence seg-
ments of equal length. Such segment pairs are referred
to as diagonals since they would appear as diagonals in
the comparison matrix belonging to a pairwise sequence

comparison.

A pairwise as well as a multiple alignment is consid-
ered to be represented by a collection of such diagonals
meeting a certain consistency criterion. In short, a col-
lection of diagonals is called consistent if there exists
an alignment such that all segment pairs are matched
(see Figure 1. For a precise mathematical definition of
our notion of consistency, see Morgenstern, Dress, and
Werner 1996). Diagonals may overlap if different pairs
of sequences are involved. However, diagonals involving
the same pair of sequences are not allowed to have any
overlap (see Figure 1 and Figure 2).

Based on these ideas, we developed an algorithm
which, given a set of two or more sequences, tries to find
a suitable collection of diagonals representing an align-
ment of the input sequences. An implementation of this
algorithm is distributed under the name DIALIGN 1
(for DIagonal ALIGNment).

The fundamental difference between the DIALIGN
approach and other global or local alignment algorithms
is the underlying optimization criterion: DIALIGN em-
ploys a so-called weight function assigning a weight to
every possible diagonal. Given such a weight function,
the score of an alignment is defined to be the sum of the
weights of the incorporated diagonals. E.g., the score
of the alignment in Figure 2 would be the sum of the
weights of the seven diagonals it is composed of. (Note
that in this definition of the score of an alignment,
no gap penalty is involved.) Given this novel scoring



Sequences:

ASE-Fly RRNARERNRVKQVNNGFALLREKIPEEVSEAFEAQGAGRGASKKLSKVETLRMAVEYIRSL
TFE3-Human  KKDNHNLIERRRREFNINDRIKELGTLIPKSSDPEMRWNKGTILKASVDYIRKL
MYC-Chicken KRRTHNVLERQRRNELKLSFFALRDQIPEVANNEKAPKVVILKKATEYVLST

Selected Diagonals:

1 RRNARERNRVKQVNNGFALLREKIPEE (ASE-F1ly)
4  NHNLIERRRRFNINDRIKELGTLIPKS (TFE3-Human)

46  SKVETLRMAVEYIRSL (ASE-Fly)
38  NKGTILKASVDYIRKL (TFE3-Human)

3  NARERNRVKQVNNGFALLREKIPE (ASE-Fly)
6  NVLERQRRNELKLSFFALRDQIPE (MYC-Chicken)

42  SKKLSKVETLRMAVEYIRSL (ASE-F1ly)
33  NEKAPKVVILKKATEYVLSI (MYC-Chicken)

1 KKDNHNLIERRRR (TFE3-Human)
1 KRRTHNVLERQRR (MYC-Chicken)

23  LGTLIPKSSDPE (TFE3-Human)
23 LRDQIPEVANNE (MYC-Chicken)

39  KGTILKASVDYIRKL (TFE3-Human)
38  KVVILKKATEYVLSI (MYC-Chicken)

Resulting Alignment:

ASE-Fly —---RRNARERNRVKQVNNGFALLREKIPEEvseafeaqgagrgaSKKL-SKVETLRMAVEYIRSL
TFE3-Human  KKDNHNLIERRRRFNINDRIKELGTLIPKSSD----—-————---— PEmrwNKGTILKASVDYIRKL
MYC-Chicke  KRRTHNVLERQRRNELKLSFFALRDQIPEVAN------—-----— NEKA-PKVVILKKATEYVLSI

Figure 2: Alignment of functional domains of three basic helix-loop-helix sequences as constructed by DIALIGN 2.
The program has selected a consistent collection of seven segment pairs (so-called diagonals). Numbers on the left-
hand side of the diagonals denote the first position of the respective segment. Residues involved in the selected
segment pairs (diagonals) are shown in upper-case letters. Residues not belonging to any of these diagonals are
shown in lower-case letters. They are not considered to be aligned.



scheme, the optimization task is to find a best scoring
alignment — in other words: the task is to find a con-
sistent set of diagonals with maximal sum of weights.

Weight functions for diagonals

It is obvious that the quality of alignments produced
by this method depends first and foremost on the way
the weights of diagonals are defined. The weight func-
tion employed by DIALIGN 1 is based on an idea pro-
posed by Altschul and Erickson (Altschul and Erickson
1986): Given a diagonal D of length Ip, we denote by
sp the sum of the individual similarity values of residue
pairs within this diagonal. If protein sequences are to
be aligned, one of the usual substitution matrices, e.g.
BLOSUMS62 (Henikoff and Henikoff 1992), may be used.

Next, by P(Ip,sp) we denote the probability that a
random diagonal of the same length Ip has at least the
same sum sp of similarity values. Mathematically, this
probability is given as a sum of convolution products
of the probability distribution of the individual similar-
ity values. Then, the weight w(D) of our diagonal D
is defined to be w(D) = —log P(Ip, sp) provided this
value exceeds a certain user-defined threshold 7', and is
0 otherwise. In addition, we require diagonals to have
a minimum length of 7 residues.

Our experience has been that alignments optimized
according to this scoring scheme are generally of high
quality. (see Table 1, Table 2, Morgenstern, Dress, and
Werner 1996, Morgenstern et al. 1998). Nevertheless,
there is a general problem with the weight function as
described above: It is absolutely necessary to specify
either a certain minimum length for diagonals or a pos-
itive threshold T — otherwise even significant local sim-
ilarities may get lost in the ‘noise’ of small random di-
agonals.

Generally, DTALIGN 1 tends to compose alignments
from small diagonals. The length of the selected diag-
onals is often not much larger than the fixed minimum
length of 7 residues. For example, if the data set shown
in Figure 2 is aligned with DIALIGN 1, the alignment
is composed from 16 short diagonals rather than from
the 7 longer diagonals shown in Figure 2. It makes, of
course, no difference if we include a long diagonal D into
an alignment or if we split up D into several smaller di-
agonals Dy, ..., D,, and then include all the diagonals
D,,...,D, into the alignment — the resulting alignment
is the same. For example, if we would split the first di-
agonal in Figure 2

RRNARERNRVKQVNNGFALLREKIPEE
NHNLIERRRRFNINDRIKELGTLIPKS

into three diagonals

RRNARERN RVKQVNN GFALLREKIPEE
NHNLIERR RRFNIND RIKELGTLIPKS

the resulting alignment would be exactly the same. One
might therefore think that it made no difference if align-
ments are composed from many small or from few large
diagonals.

The problem is, however, that if a weighting scheme
for diagonals tends to assemble alignments from many
shorter diagonals rather than from a few longer ones,
it may easily happen that even significant ‘biologically
correct’ diagonals are outweighed and displaced by ‘bi-
ological wrong’ random diagonals — especially if there
is only local similarity among sequences.

Therefore, it is desirable to have a weight function
defined on the set of all possible diagonals which would
give relatively higher weights to longer diagonals of sig-
nificant similarity. In other words, if a diagonal D
with comparatively high and evenly distributed similar-
ity between the paired individual residues is broken up
into several smaller diagonals Dy,...,D,, the weight
w(D) should be significantly higher than the sum of
weights ). w(D;). Unfortunately, this is not the case
with the weight function employed by DIALIGN 1 —
which is exactly what necessitated the introduction of
the threshold 7" and the minimum length for diagonals.

To overcome these shortcomings of the weight func-
tion employed by DIALIGN 1, we have introduced a
new weight function defined on the set of all possi-
ble diagonals. Instead of considering the probability
P(lp,sp) of a given random diagonal to have a sum of
individual similarity values of at least sp, we consid-
ered the probability P*(Ip,sp) to find any diagonal of
length [p whose sum of individual similarity values is at
least as large as sp somewhere within the comparison
matrix of two random sequences of the same length as
the original sequences. (Note that this probablility de-
pends, of course, not only on the values Ip and sp but
also on the length of the sequences). We then defined
the weight w*(D) of a diagonal D to be the negative
logarithm of this probability.

Numerical values of the function P* were calculated
as follows: Probabilities P*(I,s) > 107> were deter-
mined based on random experiments. For smaller val-
ues, we used the simple approximation formula

P*(l,S) ~ l1 'l2 'P(l,S)

where [; and [ are the lengths of the sequences. Putting
K :=logly +1logls, we obtain the following approxima-
tion formula:

U)*(D) = —IOgP*(lD,SD) ~ —log[l1 'l2 'P(lD,SD)]

= —log P(lp,sp) — logly — logly = w(D) — K,

i.e. we obtain the new weight function w* by subtracting
a constant K from the old weight function w (cf. Karlin
and Altschul 1993). This is exactly the reason why the
weight function w* tends to assemble alignments from
fewer longer diagonals rather than from many shorter
ones: If a long diagonal D is replaced by n smaller diag-
onals Dy, ..., D,, the constant K has to be subtracted
n times instead of once from the respective values of
w. We incorporated the new weight function w* into
our alignment algorithm, and we will refer to this new
version of the program as DIALIGN 2.



Data set Globins Ribose

Number of sequences 6 6

Conserved domain I II III IV V I II III IV

DIALIGN 1 (T=0) 4 5 6 4 6 6 6 5 5

DIALIGN 1 (T=10) 5 4 33 32 6 5 4 4 4

DIALIGN 2 5 4 33 33 6 6 5 4 42

CLUSTAL W 6 6 6 6 6 6 3 4 32

TWOALIGN 4 4 32 32 32 22 3 4 3

DCA 6 5 6 6 6 6 5 4 5

PIMA 5 4 32 32 32 22 5 5 2
Data set Kinase Protease
Number of sequences 6 6
Conserved domain I II III IV VvV VI VII IIX I II III
DIALIGN 1 (T=0) 6 5 5 6 6 6 6 4 6 2 4
DIALIGN 1 (T=10) 6 5 6 6 6 6 6 4 5 0 3
DIALIGN 2 6 5 6 6 6 6 6 5 6 0 3
CLUSTAL W 6 6 6 6 6 6 6 4,2 5 3 4
TWOALIGN 6 22 4 6 6 5 6 3,2 5 0 222
DCA 6 6 5 6 6 6 6 6 4 4 2
PIMA 32 32 5 6 6 6 6 3 5 0 4

Table 1: Performance of different alignment methods applied to four different ‘global’ alignment problems. The table
reports the ability of correctly aligning functional domains of the sequences. Entries in the table denote numbers of
correctly aligned motifs. Multiple entries mean that a motif is correctly aligned within subgroups of sequences but

not between these subgroups.

Results and discussion

To test the new version of our program systematically
and to compare it to the original version as well as to
other alignment programs, we used 7 different sets of
protein sequences. Four of them are ‘global’ alignment
problems, i.e. within each data set, sequences are glob-
ally related. The other 3 data sets are ‘local’ alignment
problems where sequences share only isolated regions of
local similarity.

The ‘global’ data sets are globin, ribose, kinase, and
protease sequences. These sequences were used in (Mc-
Clure, Vasi, and Fitch 1994) for a systematic compar-
ison of alignment programs. Each data set contains 6
sequences. Within every data set, sequences have ap-
proximately the same length, and corresponding motifs
are at similar positions within the sequences. Therefore,
only relatively few gaps have to be inserted to correctly
align these sequences.

The ‘local’ data sets are a set of 30 helix-turn-helix
(HTH) proteins described in (Lawrence et al. 1993),
a set of 16 acetyltransferases described in (Neuwald
and Green 1994), and a set of 9 basic helix-loop-helix
(bHLH) Proteins (Accession numbers P41894, Q02575,
P17106, A55438, U10638, P13902, Q04635, U11444,
A48085). Within each of these data sets, sequences
differ considerably in length. Moreover, the conserved
domains are at different positions within the sequences.
A motif that occurs at the N-terminal of one sequence
may occur at the C-terminal of another sequence.

We have tested the ability of different alignment pro-
grams to correctly align the conserved functional do-
mains within these 7 data sets. In the bHLH sequences,
the conserved domains are the first and the second o-
helix as described in (Atchley and Fitch 1997). For all
other data sets we have used the domains described in
the quoted references.

We have tested the following programs: DI-
ALIGN 1 (Morgenstern, Dress, and Werner 1996,
Morgenstern et al. 1998), DIALIGN 2 (this study),
CLUSTAL W (Thompson, Higgins, and Gibson 1994),
TWOALIGN (Abdeddaim 1997), Divide and Conquer
(DCA) (Tonges et al. 1996, Stoye, Moulton, and Dress
1997), and PIMA (Smith and Smith 1992). All pro-
grams have been used with default parameters. In addi-
tion, we report the results of DIALIGN 1 with threshold
T = 10 in order to study the influence of this parameter
on the resulting alignments. The results of our program
comparison are reported in Table 1 and Table 2.

In the ‘global’ alignment problems, alignments pro-
duced by DIALIGN 1 are comparable with alignments
produced by standard global methods as DCA and
CLUSTAL W. In these situations, DIALIGN 1 per-
formed best without a threshold T, i.e. with the de-
fault value 7' = 0. In contrast, if sequences are only
locally related, DIALIGN 1 was superior to standard
alignment programs. However, in these ‘local’ align-
ment problems, it was necessary to specify a positive
threshold (T=10) in order to obtain optimal results.



Data set HTH
Number of sequences 30
Conserved domain

DIALIGN 1 (T=0) 6,6,3,2,2
DIALIGN 1 (T=10) 19,2,2

DIALIGN 2 24,2

CLUSTAL W 5,3,2,2,2
TWOALIGN 10,6, 3, 3
DCA 5,3,2,2,2,2
PIMA 54,3,3,2,2

Transferase bHLH

16 9
I II I 1
122 9 7322
16 13,2 9 9
16 14,2 9 9
13 12 32 32
132 6,52 9 522
11 11 0 2

10,3,2 8,32 2 2

Table 2: Performance of different alignment methods applied to three different ‘local’ alignment problems. The table
reports the ability of correctly aligning functional domains of the sequences. Entries in the table denote numbers
of correctly aligned motifs. Multiple entries mean that a motif is correctly aligned within subgroups of sequences
but not between these subgroups. A motif is considered to be correctly aligned if at least 75 % of the residues are

correctly aligned.

The necessity of specifying a threshold 7" — depending
on what kind of sequences are to be aligned — is a major
drawback of DTALIGN 1.

Alignments produced by DIALIGN 2 seem to be com-
parable to the results of DIALIGN 1 and of standard
global alignment methods as DCA and CLUSTAL W
if sequences are globally related. However, if sequences
are only locally related, DTALIGN 2 seems to be clearly
superior to other methods. DIALIGN 2 yielded fully
satisfactory alignments in both, ‘global’ and ‘local’ test
examples without the necessity of specifying any param-
eter. Therefore, we think that, in view of a general ap-
plicability of the program, the new version of DTALIGN
should be prefered to the old version.

Availability
An online version of DIALIGN 2 is available at
http://bibiserv.TechFak.Uni-Bielefeld.DE/dialign/
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