
Integer Linear Programming as a Tool for

Constructing Trees from Quartet Data ?

Jan Weyer-Menkhoff a,d Claudine Devauchelle b

Alex Grossmann b Stefan Grünewald c

a Universität Göttingen, Institut für Mikrobiologie und Genetik, Abt. Bioinformatik
Goldschmidtstr. 1, D-37073 Göttingen, Germany

jan@gobics.de

b LGI (Laboratoire Génome et Informatique) - Genopole-Evry
523 place des Terrasses, 91000 Evry, France

devauchelle@genopole.cnrs.fr, grossman@genopole.cnrs.fr

c Allan Wilson Centre for Molecular Ecology and Evolution
Department of Mathematics and Statistics

University of Canterbury
Private Bag 4800, Christchurch, New Zealand

s.grunewald@math.canterbury.ac.nz

d corresponding author

Abstract

The task of the quartet puzzling problem is to find a best-fitting binary X-tree
for a finite n-set from confidence values for the 3

(

n
4

)

binary trees with exactly four
leaves from X, its fitness being measured by the sum of the confidence values of all
“induced” four-leaves subtrees. We describe a method for finding an exact solution
of this problem by integer linear programming. Similar procedures can also be used
for finding, e.g., best-fitting “circular” networks.

A crucial problem in this context is, of course, how to obtain the input confi-
dence values for the quartet trees. We propose to use inner products of rate-matrix
diagonals calculated for pairs of taxa and present the trees resulting from applying
our approach to two data sets of up to 36 mitochondrial sequences of mammals
including an outgroup.

Key words: weighted quartet, integer linear programming, observed rate matrix,
Mammals’ mitochondrial evolution, phylogeny

? This paper is based on ideas that were developed and worked out jointly with
Andreas Dress (Max Planck Institute for Mathematics in the Sciences, Leipzig,

Preprint submitted to Elsevier Science 14 January 2005

1 Introduction

Most methods to reconstruct phylogenetic trees, networks, or other struc-
tures, use either a distance matrix (e.g. Neighbour Joining) or a full sequence
alignment (e.g. Maximum Likelihood and Maximum Parsimony) as their in-
put (Saitou and Nei, 1987; Felsenstein, 1981; Fitch, 1971; Farris, 1970). While
reducing the data to pairwise distances might cause the loss of some signals
that can only be obtained by considering individual residues, working with
the full alignment often makes it necessary to solve optimization problems
which are not feasible for many taxa. A possible compromise between these
approaches is to create residue-based trees for small subsets of the set of taxa
of interest and then to combine the results to find a big tree. Since four taxa
are needed to obtain different possible tree topologies, it is natural to consider
all subsets with four elements (quadruples) of the set of taxa.

For any four taxa a, b, c, d from a finite set X of investigated taxa, there
exist exactly three binary trees with leaf set {a, b, c, d} which will be called
quartet trees and which will be symbolised by ab|cd, ac|bd, ad|bc. The most
straightforward idea for a quartet method is to use some tool to calculate the
best fitting quartet tree for every quadruple of X and then to construct an
X-tree, i. e. an unrooted binary tree with leaves labelled by X, that contains
all optimal quartet trees as its restriction to the corresponding quadruple.
Unfortunately, such a tree does not exist in general. Moreover, it turns out
that, for real data, quartet methods that do not allow non-optimal quartet
trees tend to produce trees with very few internal edges.

Assuming that we accept that a good X-tree contains some non-optimal quar-
tet trees, it is sensible to introduce a measure of quality. This way, we can
measure how much worse a non-optimal quartet tree is compared to the re-
spective optimal one. More precisely, we start with a function that maps every
possible quartet tree q to a confidence value w (q) which represents how much
one thinks that q represents the true family relationship. Of course, we would
prefer to accept a non-optimal quartet tree which has an almost equal confi-
dence value as the optimal one, rather than to accept a non-optimal quartet
tree with a confidence value significantly different to the one of the optimal
quartet tree.

More formally, we are interested in solving the Quartet Puzzling Problem:
Given a confidence value for every possible quartet tree on X, find a binary
X-tree T such that the sum w(T) of the confidence values of all quartet trees
which are restrictions of T is maximal.

It has been shown in (Steel, 1992) that, for a given collection Q of quartet trees,

Germany).

2

it is NP-hard to decide if an X-tree exists which contains all quartet trees in Q
as restrictions. Hence, we cannot expect that there is a polynomial algorithm
to find an optimal tree. Some heuristics have been developed to construct a
tree T for which w(T) is large but not necessarily optimal. The most widely
used method of this kind is Tree Puzzle (Strimmer and von Haeseler, 1996;
Strimmer et al., 1997) which produces many binary trees and then applies
a consensus method to obtain the not necessarily binary Tree Puzzle tree.
Other approaches are the “Geometric Algorithm” in (Ben-Dor et al., 1998)
and a weighted version of AddQuart (Berry and Gascuel, 2000).

An exact method to solve the Quartet Puzzling Problem is also presented
in (Ben-Dor et al., 1998). That approach uses dynamic programming and
manages to solve problems with up to 20 taxa.

Also an important approach for solving quartet problems is split decomposi-
tion (Bandelt and Dress, 1993, 1992; Dress et al., 1996b) with visualisation by
the program Splitstree (jsplits) (Dress et al., 1996a; Huson, 1998; Huson and
Bryant, 2005).

In this paper, we reformulate the problem as an integer linear programming
(ILP) problem. The number of variables and constraints increases very rapidly
with the number of taxa. The standard ILP tools became insufficient for fami-
lies containing more than about 17 taxa. However a collaboration with the Op-
erational Research and Optimization Group of the Department of Mathemat-
ics and Statistics at the University of Edinburgh - especially with Ken McK-
innon - and the Edinburgh Parallel Computing Centre has led to the devel-
opment of an algorithm that made it possible to solve the problem for up
to 36 taxa. Instead of considering all constraints at once, the algorithm adds
only a small, randomly-chosen fraction of violated constraints to the solver.
For more details, see (Weyer-Menkhoff, 2003).

Moreover, by slightly changing the constraints, we can solve the corresponding
problem for other phylogenetic structures like cyclic split systems, cf. (Bandelt
and Dress, 1992).

The quartet methods described above require confidence values for the possible
quartets, and they are independent of the way of obtaining those confidence
values. For example, Tree-Puzzle uses posterior likelihoods, and an other op-
tion would be parsimony scores.

In this paper, we also introduce a new method for calculating confidence val-
ues: we use the negative scalar product of diagonals of observed rate matrices.
In (Devauchelle et al., 2001), an observed rate matrix is associated to each pair
of taxa in a multiple alignment. It is defined as the matrix-valued logarithm
of the corresponding observed Markov matrix. The idea of analysing observed

3

rate matrices is that for each two taxa a matrix is calculated which consists
of 20× 20 entries. Each of these entries, (especially the diagonal elements) ex-
presses a genetic difference between the two taxa. As each noise event might
effect some but not all of these “clocks”, the weight of such errors is reduced
in the scalar product.

We have used the data of twelve genes of the mitochondria of 20 and of 36
taxa (mammals and outgroup). We derived binary X-trees which are close
to a previously published tree. Without asserting that we have found the
correct tree of mammals, we conclude that the method of deriving confidence
values via rate matrices as well as the method of solving the quartet puzzle
problem with integer linear programming give promising results and that they
should - independently and combined - be developed further to obtain a tool
of phylogenetic analysis.

2 Preliminaries on X-trees and their Generalisations, Split Sys-
tems and Quartet Systems

In this section, we will recall and introduce definitions of three equivalent con-
cepts to express the same phylogenetic information: as binary X-tree, as a
compatible collection of X-splits, or as a Colonius-Schulze quartet system (in-
troduced later). The fact that in a lot of cases not all aspects of the evolution
of investigated taxa can be expressed by binary X-trees (as well as by collec-
tions of compatible X-splits or by Colonius-Schulze quartet systems) has led
to a big effort to generalise the three concepts by weakening conditions while
keeping the equivalence (or at least an injective relation) between at least two
of the three concepts.

We will also recall some of these generalisations.

Most important in this section for understanding the other sections will be
Theorem 1, which explains the relation between binary X trees and sets of
quartet trees satisfying certain conditions. Our approach enables to find an
element which explains best given quartet confidence data and which is taken
out of a class which can be more general than the class of binary X trees. In
order to understand also these generalisations, the whole Section 2 should be
read.

A partial split S of a finite set X is an unordered pair {A,B} of two disjoint
and non-empty subsets A,B of X. It is also called a split if A∪B = X holds.
A partial split {A,B} is called trivial if #A = 1 or #B = 1 holds.

4

v

x

y

u

Fig. 1. The quartet tree uv | xy

Two splits S and S ′ are said to be compatible if there exist A ∈ S and A′ ∈ S ′

with A ∩ A′ = ∅.

If we eliminate an edge from an X-tree T , the X-tree decomposes into two
connected components. Thus, every edge e of an X-tree induces a unique split
S = Se of X consisting of the set of elements of X which are leaves of one
connected component and the set of elements of X which are leaves of the
other connected component. Let

S(T) := {Se : e is an edge of T}

denote the collection of splits of X displayed by T (or the split encoding of T),
i.e. the collection of all splits that are associated with T in this way.

As is easily seen and was noted already for example in (Buneman, 1971), any
two splits in S(T) are compatible. Conversely, given any set S of pairwise
compatible splits of X containing all trivial splits on X, there exists exactly
one X-tree T (up to canonical isomorphism) with S(T) = S which is therefore
also called the Buneman tree associated with S and denoted by B(S). Thus,
S(B(S)) = S holds for every set S of pairwise compatible splits containing
all trivial splits of X while B(S(T)) “=” T holds for every X-tree T . If and
only if S is inclusion-maximal in the set of pairwise compatible collections of
splits, B(S) is binary.

How the Buneman tree can be constructed was already explained in 1971
in (Buneman, 1971).

A circular split system is a split system generated as follows:

Let x0, . . . , xn = x0 (in this order) be the vertices of a convex n-gon. Any pair
of distinct edges (xi, xi+1), (xj, xj+1), where i < j, gives rise to a split
{xi+1, xi+2, . . . xj}, {xj+1, . . . xi−1, xi}, that is, the split induced by any line
crossing the edges (xi, xi+1) and (xj, xj+1).

The symbol uv | xy denotes the quartet tree in Figure 1. Note that uv | xy =
vu | xy = xy | uv always holds. Given X, any collection of quartet trees on X

will be called quartet system on X. The collection of all quartet trees on X

will be denoted by S2,2 (X).

Given a quartet system Q on X, we define a (partial) split S = {A,B} of X

5

to be a (partial) Q-split if aa′ | bb′ ∈ Q holds for all distinct a, a′ ∈ A and
b, b′ ∈ B.

We denote the set of all Q-splits by S(Q) and the collection of all partial Q-
splits by Spart(Q). Conversely, given any collection S of X-splits, the quartet
system Q(S) of quartet trees displayed by S is defined by

Q(S) :=
{

aa′|bb′
∣

∣

∣

∣

{a, a′, b, b′} = 4, and there exists

a split {A,B} ∈ S with a, a′ ∈ A and b, b′ ∈ B

}

.
(1)

Note that Q(S(Q)) ⊆ Q(Spart(Q)) = Q holds for every quartet system Q.

For an X-tree T , the quartet system Q (S (T)) is the collection of quartet
trees which are restrictions of T .

Already in (Colonius and Schulze, 1977), conditions have been shown which
enable to decide whether for a given quartet system Q a binary X-tree T

exists for which Q = Q (S (T)) holds: They have established a theorem that
is essentially equivalent to:

Theorem 1 (Colonius and Schulze) Given a finite set X of cardinality
n ≥ 4 and a quartet system Q on X, i.e. a subset Q of the set

S2,2(X) := {ab|cd : a, b, c, d ∈ X, #{a, b, c, d} = 4}

of all (2, 2)-splits of X, there exists a (necessarily unique) binary X-tree T

with Q = Q(S (T)) if and only if

(2) # (Q∩ {ab|cd, ac|bd, ad|bc}) = 1

holds for all a, b, c, d in X with #{a, b, c, d} = 4, and

(3) ab|cd, ab|de ∈ Q ⇒ ab|ce ∈ Q

as well as

(4) ab|cd, bc|de ∈ Q ⇒ ab|de ∈ Q

holds for all a, b, c, d, e in X with #{a, b, c, d, e} = 5.

A quartet system Q will be called a simple cover if

(Q∩ {ab|cd, ac|bd, ad|bc}) = 1,

6

and a double cover if

(Q∩ {ab|cd, ac|bd, ad|bc}) = 2

holds for all a, b, c, d with #{a, b, c, d} = 4.

Further, Q will be called telescopic if Condition (4) from Theorem 1 holds for
any five distinct elements a, b, c, d, e from X, and it will be called transitive if
Condition (3) from Theorem 1 holds for any five distinct elements a, b, c, d, e

as above.

A transitive telescopic simple cover will be called a Colonius-Schulze quartet
system. So, Colonius-Schulze quartet systems on X correspond bijectively to
binary X-trees and so to maximal compatible split systems on X.

Supplemented by (Weyer-Menkhoff, 2003), it is shown in (Bandelt and Dress,
1992) that Q is a transitive double cover if and only if S (Q) is a circular split
system.

3 Quartet Puzzle Problem and Integer Linear Programming

In this section, we reformulate the Quartet Puzzle Problem as integer linear
programming problem.

We state the Quartet Puzzle Problem in a more general way: Given a collection
R of quartet systems, find the element Q ∈ R which maximises the sum
∑

q∈Q w (q) of the corresponding confidence values. If R is the collection of
Colonius-Schulze quartet systems, this problem is equivalent to the problem
to find the best-fitting binary X-tree.

An integer linear programming problem can be stated as follows:

Given linear functions A : IRm → IRn and c : IRm → IR and a vector b ∈ IRn,
find x ∈ Z

m which satisfies:
(5)

The vector x maximises c (x) in the set of x for which A (x) ≤ b holds.

(The condition x ≤ y denotes that xi ≤ yi holds for all positions i in the
vectors. 0 denotes the zero vector, and 1 denotes the vector with 1 as every
entry.)

The corresponding relaxed linear programming problem is to find x ∈ IRm

which satisfies Condition (5).

7

For an introduction to linear programming problems, cf. (Saigal, 1995), for an
introduction to integer linear programming problems, cf. (Schrijver, 1986).

We will show that if the collection R of allowed quartet systems consists of
the Colonius-Schulze quartet systems on X, one can transform the problem
into the following integer linear optimisation problem:

Problem 1 (Integer Linear Programming Problem) Find x ∈ Z
S2,2(X)

which maximises
∑

q∈S2,2(X) w (q) · xq under the constraints that

i) 0 ≤ x ≤ 1
ii) xab|cd + xac|bd + xad|bc = 1 for any distinct a, b, c, d ∈ X

iii) xab|cd + xab|de − xab|ce ≤ 1 for any distinct a, b, c, d, e ∈ X

iv) xab|cd + xbc|de − xab|de ≤ 1 for any distinct a, b, c, d, e ∈ X

hold.

Clearly, the problem is an integer linear programming problem in the form
stated above: The objective function is linear, the “=” constraint can be trans-
formed to a “≤” and a “≥” constraint and “≥” constraints can be transformed
to “≤” constraints by multiplying with −1.

Any integral vector x satisfying Condition (i) has only components with 0
or 1 as value, and it corresponds to the quartet system Qx which contains
those quartet trees q of S2,2 (X) for which xq equals 1. So, this defines a 1-1
correspondence between the set of integral vectors satisfying Condition (i) and
the set 2S2,2(X) of quartet systems on X.

An integral vector satisfying Condition (i) also satisfies Condition (ii) if and
only if the corresponding quartet system Qx is a simple cover. It satisfies
Condition (iii) if and only if the corresponding quartet system Qx is transitive:
xab|cd + xab|de = 2 holds if and only if ab | cd ∈ Qx and ab | de ∈ Qx hold. In
this case, xab|cd + xab|de − xab|ce ≤ 1 holds if and only if ab | ce ∈ Qx holds.

Similarly, an integral vector x satisfying Condition (i) also satisfies Condi-
tion (iv) if and only if the corresponding quartet system Qx is telescopic.

It follows that x is a feasible solution of the integer linear programming prob-
lem above, if and only if the corresponding quartet system Qx is a simple
transitive telescopic cover, in other words, if and only if Qx is Colonius Schulze.

As xq = 1 holds for any q ∈ Qx and as xq = 0 holds for any q 6∈ Qx,
∑

q∈S2,2(X) w (q) · xq =
∑

q∈Qx
w (q) holds, and x is an optimal solution of the

integer linear programming problem if and only if Qx is a solution of the
quartet puzzle problem.

8

In the same way, one can see that Qx is an optimal solution of the quartet
puzzle problem for the collection R of allowed quartet systems being the col-
lection of transitive double covers if and only if x solves the following integer
linear programming problem:

Problem 2 (Integer Linear Programming Problem) Find x ∈ Z
S2,2(X)

which maximises w (x) under the constraints that

i) 0 ≤ x ≤ 1
ii) xab|cd + xac|bd + xad|bc = 2 for any distinct a, b, c, d ∈ X

iii) xab|cd + xab|de − xab|ce ≤ 1 for any distinct a, b, c, d, e ∈ X

hold.

The following table shows the number of variables and the number of con-
straints which have to hold in addition to the constraints x ≥ 0.

taxa variables constraints Prob. 1 constraints Prob. 2

n 3 ·
(

n

4

) (

n

4

)

+ 30 ·
(

n

5

) (

n

4

)

+ 60 ·
(

n

5

)

5 15 35 65

6 45 195 375

7 105 665 1295

8 210 1750 3430

9 378 3906 7686

10 630 7770 15330

20 14535 469965 935085

30 82215 4302585 8577765

36 176715 11368665 22678425

40 274170 19831630 39571870

As described in (Weyer-Menkhoff, 2003), a way was found for solving such
large problems for a number of taxa up to 36.

As we assume that NP-hard problems cannot be solved in polynomial time,
and as Steel (1992) has shown that the quartet puzzle problem is NP-hard,
we cannot expect that one can find a formulation of the linear programming
problem with a polynomial number of constraints such that the solution of
the relaxed linear programming problem is always integral.

9

For the real-data example given in Section 5, the solution of the relaxed linear
programming problem was integral. As one can expect that for a good bio-
logically meaningful confidence function, the quartet system which contains
for any three corresponding quartet trees the one with the highest confidence
differs only in a few quartet trees from the solution of the quartet puzzle prob-
lem, we hope that in practice a good confidence function yields an integral
solution for the relaxed integer linear programming problem.

4 Observed Rate Matrices and Quartet Weights

It is important to find accurate confidence values for the quartet trees. For
sufficiently long amino acid sequences, we suggest to use observed rate matrices
which are introduced and investigated by Devauchelle et al. (2001).

The idea of observed rate matrices is the following: In a way that will be
explained later, for any two taxa x, y under consideration, an observed rate
matrix L(x,y) can be calculated. In (Devauchelle et al., 2001) the authors as-
sert: “If one neglects fluctuations arising from the finite length of sequences,
any continuous reversible Markov model with a single rate matrix Q over
an arbitrary tree predicts that all the observed matrices L are multiples of
Q.” In other words, the observed rate matrices viewed as vectors in the 400
dimensional space would all point into the same direction.

In fact, as investigated in the same article, the vectors pointed only roughly
into the same direction and one could see that directions belonging to pairs
of the same phylogenetic group formed clouds.

For calculating a confidence value w (ab | cd), we will use the negative scalar
product of the diagonals of the observed rate matrices L(a,b) and L(c,d). As will
be explained later, these values take advantage of both aspects of the observed
rate Matrices: The length and the direction of the observed rate matrices.

It is not a disadvantage that these confidence values are usually negative
if the quartet puzzling problem satisfies that an additive constant added to
each of the confidence values will not change the solution. (The two problems
considered in Section 3 satisfy this condition.) If you prefer to work with non-
negative weights, just add a sufficiently large additive constant to the values.

The article (Devauchelle et al., 2001), starts with a natural Markov matrix
P (a,b) associated to an aligned ordered pair (a, b) of sequences.

10

v

x

y

u

l{u,v} l{x,y}
l{u,x}

l{v,y}

Fig. 2. If uv | xy is the correct quartet tree, the lengths of l{u,v} and l{x,y} tend to
be shorter than the lengths of l{u,x}, l{u,y}, l{v,x}, l{v,y}.

The observed rate matrix (if it exists) is defined as

(6) L(x,y) = log P (x,y)

where log P denotes the matrix-valued logarithm of a matrix P . If P is “close
enough” to the identity matrix, this matrix logarithm exists.

For the matrix logarithm, the relation log P τ = τ log P holds for real numbers
τ .

We symmetrise:

(7) L
{x,y}

:=
1

2

(

L(x,y) + L(y,x)
)

and let l{x,y} be the diagonal of L
{x,y}

.

As mentioned before, we suggest to use the negative scalar product −
〈

l{u,v}, l{x,y}
〉

.

as confidence value w (uv | xy) for a quartet tree uv | xy.

There are two reasons:

First, if, for two matrices P (x,y) and P (u,v) the condition
(

P (x,y)
)τ

= P (u,v)

holds, τ log P (x,y) = log P (u,v) follows. So, we would expect that if the “time
distance” between u and v is larger than the “time distance” between x and
y that then the absolute value of each component of the vector l{u,v} is larger
than the absolute value of the corresponding component in the vector l{x,y}.
So, consider the case that the quartet tree uv | xy is the correct one as shown
in Figure 2. If the lengths of the branches do not differ too much, one will in
most cases observe that l{u,v} as well as l{x,y} is shorter than l{u,x}, l{u,y}, l{v,x},
l{v,y}. It follows that in most cases w (uv | xy) = −

〈

l{u,v}, l{x,y}
〉

is larger than

w (ux | vy) = −
〈

l{u,x}, l{v,y}
〉

and w (uy | vx) = −
〈

l{u,y}, l{v,x}
〉

.

The second reason for using these quartet weights is the following.

11

Assume that uv | xy is the correct quartet tree. The “history” from u to v

(or from v to u) is independent from the “history” from x to y while the
“history” from u to x shares the middle edge with the “history” from v to y

(see Figure 2). It follows that the rate matrices L(u,x) and L(v,y) – regarded
as vectors in an 400 dimensional vector space – tend to point into the same
direction while the rate matrices L(u,v) and L(x,y) tend to point into different
directions.

This is the second reason why one would expect that −
〈

l{u,v}, l{x,y}
〉

is larger

than −
〈

l{u,x}, l{v,y}
〉

.

5 Validation with Biological Data

For checking that our methods produce reasonable results, we applied them
to a set of 17 Mammals plus 3 taxa as outgroup. For the 20 taxa, we analysed
12 mtDNA encoded proteins (all except ND6). Manually produced alignments
have been obtained from Trish McLenachan, Allan Wilson Centre, Massey
University (personal communication). These alignments are close to those
which were used by Penny et al. (1999) for the investigation of the mam-
malian evolution.

For each pair {a, b} of elements of X, the diagonal l{a,b} of the observed rate

matrix was calculated. For the confidence function w : ab | cd 7→ −
〈

l{a,b}, l{c,d}
〉

,
the Quartet Puzzle Problem to find the best fitting Colonius-Schulze quartet
system was solved by using the integer linear programming approach explained
above. In order to calculate the Buneman tree corresponding to a quartet sys-
tem, the package “phyloquart” by Berry (1999) was used. For comparison, we
have also applied the phylogeny program “tree-puzzle” to the same alignments.
(Cf. (Schmidt et al., 2003-2004, 2002).) The tree obtained by tree-puzzle has
the same topology as the one published by Penny et al. (1999). The trees have
been visualised with the “phylip” package by Felsenstein (1993) and they are
shown in Figure 3.

The aim of this paper is not a careful investigation and discussion of the
evolution of mammals. What we want to emphasise is, that the trees shown in
Figure 3. are close enough to conclude that our methods produce reasonable
results.

In order to show that the method can also be applied to a larger set of taxa, we

12

a)

b)

Fig. 3. Fig. 3a gives the topology of our solution, and Fig. 3b the topology obtained
by Tree Puzzle, which is identical to the one given by Penny et al. (1999), if one
removes the outgroups. The differences between Fig. 3a and Fig. 3b are: 1: In our
solution, the whale is not grouped with the cow. 2: The guinea pig is not grouped
with other rodents. 3: The rabbit is close to the primates. 4: The primates branched
off earlier. The last three points are debated in Penny et al. (1999).

have also applied it to a set X of 36 taxa: 35 Mammals and the Mustelus man-
azo (shark) as outgroup: We analysed twelve mtDNA encoded proteins (all ex-
cept ATP 8). The alignments have been obtained with CLUSTAL W (Thomp-
son et al., 1994) using the default options and without manual adjustments.

As above, we have used w : ab | cd 7→ −
〈

l{a,b}, l{c,d}
〉

as confidence function

13

Fig. 4. Unrooted tree representing the solution of the Quartet Puzzle Prob-
lem searching for a Colonius Schulze quartet system with the weight function
w : ab | cd 7→ −

〈

l{a,b}, l{c,d}
〉

for an example of 36 taxa.

and found the best fitting Colonius-Schulze quartet system. The X-tree corre-
sponding to the solution is shown in Figure 4. Its subtree on the 17 taxa used
earlier has only two differences to the tree discussed in (Penny et al., 1999)
(compare with Figure 3b): The placement of the guinea-pig and the placement

14

of the whale.

6 Conclusions

In this paper, we have reformulated the quartet puzzle problem as an integer
linear programming problem, thus putting it into contact with a field that has
been intensively studied for many decades. In addition, we have introduced a
new confidence function, namely the negative scalar product of the diagonal
of observed rate matrices.

We have applied these tools to mitochondrial data from mammals and re-
constructed binary X-trees. They looked reasonable. So we conclude that the
method to calculate confidence values from observed rate matrices and that
the method to solve the quartet puzzle problem as integer linear programming
problem is worth being developed further to a tool for phylogenetic analysis.

7 Acknowledgements

We thank Trish McLenachan for repreparing the aligned sequences used in
(Penny et al., 1999). The work of Jan Weyer-Menkhoff was supported by the
Graduate Program “Strukturbildungsprozesse” of the Deutsche Forschungs-
gemeinschaft at the University of Bielefeld, partly by the European Commis-
sion through grant number HPRI-CT-1999-00026 (the TRACS Programme
at EPCC), and by DFG grant MO 1048/1-1. We also thank many people
for their advice and suggestions, especially Burkhard Morgenstern and three
anonymous reviewers.

References

Bandelt, H.-J., Dress, A., March 1992. A canonical decomposition theory for
metrics on a finite set. Advances in Mathematics 92 (1), 47–105.

Bandelt, H.-J., Dress, A., 1993. A relational approach to split decomposi-
tion. Materialien / Universität Bielefeld, Forschungsschwerpunkt Mathe-
matisierung 68.

Ben-Dor, A., Chor, B., Graur, D., Ophir, R., Pelleg, D., 1998. Constructing
phylogenies from quartets: Elucidation of eutherian superordinal relation-
ships. Journal of Computational Biology 5 (3), 377–390.

Berry, V., Feb 1999. Phyloquart 1.3 - a quartet phylogeny package.
http://www.lirmm.fr/~vberry/PHYLOQUART/phyloquart.html

15

Berry, V., Gascuel, O., 2000. Inferring evolutionary trees with strong combi-
natorial evidence. Theoretical Computer Science 240 (2), 271–298.

Buneman, P., 1971. The recovery of trees from measures of dissimilarity.
In: Hodson, F., Kendall, D., Tǎutu, P. (Eds.), Proceedings of the Anglo-
Romanian conference. The Royal Society of London and The Academy of
the Socialist Republic of Romania, the University Press, Edinburgh, pp.
387–395.

Colonius, H., Schulze, H. H., 1977. Trees constructed from empirical relations.
Braunschweiger Berichte aus dem Institut fuer Psychologie 1.

Devauchelle, C., Grossmann, A., Hénault, A., Holschneider, M., Monnerot, M.,
Risler, J. L., Torrésani, B., 2001. Rate matrices for analyzing large families
of protein sequences. Journal of Computational Biology 8 (4), 381–399.

Dress, A., Huson, D., Moulton, V., 1996a. Analyzing and visualizing sequence
and distance data using SPLITSTREE. Discrete Appl. Math. 71 (1-3), 95–
109.

Dress, A., Moulton, V., Terhalle, W., 1996b. T-theory: An overview. Europ.
J. Combinatorics 17, 161–175.

Farris, J., 1970. Methods for computing Wagner trees. Syst. Zool. 34, 21–24.
Felsenstein, J., 1981. Evolutionary trees from DNA sequences: A maximum

likelihood approach. J Mol Evol 17 (368-376).
Felsenstein, J., 1993. Phylip (phylogeny inference package) version 3.5c. Dis-

tributed by the author, department of Genetics, University of Washington,
Seattle.

Fitch, W. M., 1971. Toward defining the course of evolution: minimum change
for a specific tree topology. Systematic Zoology 20, 406–416.

Huson, D. H., 1998. Splitstree: a program for analyzing and visualizing evolu-
tionary data. Bioinformatics 14 (1), 68–73.

Huson, D. H., Bryant, D., 2005. Estimating phylogenetic
trees and networks using splitstree4, in preparation. (js-
plits) http://www-ab.informatik.uni-tuebingen.de/software/

jsplits/welcome en.html.
Penny, D., Hasegawa, M., Waddell, P. J., Hendy, M. D., 1999. Mammalian

evolution: Timing and implications from using the logdeterminant transform
for proteins of differing amino acid composition. Systematic Biology 48 (1),
76–93.

Saigal, R., 1995. Linear programming : a modern integrated analysis. Kluwer
Academic Publishers, Boston.

Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–
425.

Schmidt, H. A., Korbinian Strimmer, von Haeseler, A., 2003-2004. Tree-puzzle.
http://www.tree-puzzle.de.

Schmidt, H. A., Strimmer, K., Vingron, M., von Haeseler, A., 2002. Tree-
puzzle: maximum likelihood phylogenetic analysis using quartets and par-
allel computing. Bioinformatics 18, 502–504.

16

Schrijver, A., 1986. Theory of linear and integer programming. John Wiley &
Sons.

Steel, M., 1992. The complexity of reconstructing trees from qualitive charac-
ters and subtrees. Journal of Classification 9, 91–116.

Strimmer, K., Goldman, N., von Haeseler, A., 1997. Bayesian probabilities
and quartet puzzling. Mol. Biol. Evol. 14 (2), 210–211.

Strimmer, K., von Haeseler, A., 1996. Quartet puzzling: A quartet maximum-
likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13 (7),
964–969.

Thompson, J., Higgins, D., Gibson, T., 1994. Clustal W: Improving the sensi-
tivity of progressive multiple sequence alignment through sequence weight-
ing, position specific gap penalties and weight matrix choice. Nucl. Acids
Res. 22, 4673–4680.

Weyer-Menkhoff, J., 2003. New quartet methods in phylogenetic combina-
torics. Ph.D. thesis, Universität Bielefeld.

17

