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ABSTRACT

Motivation: Multiple sequence alignments can be constructed on
the basis of pairwise local sequence similarities. This approach is
rather flexible and can combine the advantages of global and local
alignment methods. The restriction to pairwise alignments as building
blocks, however, can lead to misalignments since weak homologies
may be missed if only pairs of sequences are compared.
Results: Herein, we propose a graph-theoretical approach to find
local multiple sequence similarities. Starting with pairwise alignments
produced by DIALIGN, we use a min-cut algorithm to find potential
(partial) alignment columns that we use to construct a final multiple
alignment. On real and simulated benchmark data, our approach
consistently outperforms the standard version of DIALIGN where
local pairwise alignments are greedily incorporated into a multiple
alignment.
Availability: The prototype is freely available under GNU Public
Licence from E.C.
Contact: ecorel@gwdg.de
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1 INTRODUCTION
Multiple sequence alignment (MSA) is a requisite for almost all
aspects of computational sequence analysis, but it is a notoriously
difficult task, see Edgar and Batzoglou (2006), Morrison (2006)
or Kemena and Notredame (2009) for recent reviews. Traditionally,
alignment methods have been characterized as either local (Altschul
et al., 1997; Bailey and Elkan, 1994; Smith and Waterman, 1981) or
global (Edgar, 2004; Lassmann and Sonnhammer, 2005; Needleman
and Wunsch, 1970; Thompson et al., 1994). The idea of including
local alignment information into global alignment tools was first
implemented in DIALIGN (Morgenstern et al., 1996) and is also
used in more recent tools such as T-Coffee (Notredame et al., 2000)
or MAFFT (Katoh et al., 2005).

Most approaches for MSA are based on well-defined objective
functions and try to find optimal or near-optimal MSAs according
to these functions. Traditional objective functions for pairwise
alignment are defined by summing up individual substitution
scores and gap penalties (Needleman and Wunsch, 1970); this
can be extended to multiple alignment using a (weighted) sum-of-
pairs (SPs) or tree-alignment approach. These objective functions

∗To whom correspondence should be addressed.

have a probabilistic interpretation and can be formulated in a
hidden Markov model (HMM) framework (Durbin et al., 1998;
Eddy, 1995). More recently, segment-based objective functions
(Morgenstern et al., 1996) and objective functions based on
probabilistic consistency (Do et al., 2005) have been proposed.
A promising new approach is the use of conditional random fields
for MSA as proposed by Do et al. (2006).

Since the optimal multiple alignment problem is NP-hard under
any reasonable objective function, virtually all MSA programs
are based on heuristic optimization algorithms. Most of these
heuristics work by integrating rather simple partial alignments into
a final multiple alignment. For global alignment, paradigmatically
represented by ClustalW (Thompson et al., 1994), this is usually
done by progressive alignment. Here, single sequences and profiles
of related sequences are aligned until all input sequences are
included in a multiple alignment. In contrast, in the segment-based
approach implemented in DIALIGN, local similarities are integrated
sequentially under the constraints imposed by a certain consistency
criterion. More recently, the progressive approach has also been
applied to the segment-based alignment though (Subramanian et al.,
2008).

Consistency is an order-theoretic condition that ensures the
compatibility of the local similarities with the linear structure of a
global alignment (Abdeddaïm and Morgenstern, 2001; Morgenstern
et al., 1996). Shortly spoken, a set of (partial) alignments A1,...,Ak
is called consistent, if an alignment A of the input sequences
exists such that each of the alignments Ai is represented in A.
In the DIALIGN program, the raw material from which a multiple
alignment is built is a set of pairwise gap-free local alignments.
Such partial alignments are called fragment alignments or, shorter,
fragments. Thus, a fragment is represented as a pair of segments of
the same length from two of the input sequences. Each fragment
is given a weight score based on the probability of its random
occurrence, and the optimization task is to find a consistent set of
fragments with maximum total weight.

For pairwise alignment, a consistent set of fragments is a chain of
fragments, i.e. a set of fragments where for any two fragments one
of them is strictly to the left of the other one. An optimal alignment
in this approach is, therefore, a chain of fragments with maximum
total weight and can be found by dynamic programming, either
using standard fragment-chaining algorithms (Gusfield, 1997), or by
a more space-efficient algorithm that is implemented in DIALIGN
(Morgenstern, 2000, 2002). For multiple alignment, fragments from
the respective optimal pairwise alignments are greedily included or
discarded according to their consistency with each other.
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A general problem with the algorithmic approach adopted in
DIALIGN is that weakly conserved homologies can easily be
missed since they may not appear statistically significant in the
pairwise alignments that are carried out as the first step of the
algorithm. Moreover, even if a weak local similarity is detected
and represented by fragments in some of the optimal pairwise
alignments, these fragments may be outweighed by spurious random
similarities in other pairwise alignments. Therefore, alternative
optimization algorithms have been proposed for the segment-based
alignment approach, e.g. integer linear programming (Kececioglu
et al., 2000; Lenhof et al., 1999). However, these approaches are
computationally expensive. Alternatively, it is possible to search
for multiple local alignments in a first step, and to use these
alignments as anchor points (Morgenstern et al., 2005, 2006) for
a subsequent global alignment procedure. Such an approach has
been recently proposed by Pitschi (2008). Complementary to this
anchored-alignment approach, it is possible for the user to exclude
certain regions of the input sequences from being aligned to each
other (Dress et al., 2008).

2 APPROACH
In this article, we study a different approach to the segment-
based multiple alignment. Like in the original approach, we start
with constructing all optimal pairwise alignments in the sense
of DIALIGN, i.e. by finding optimal chains of fragments for
all sequence pairs. However, instead of inserting these fragments
directly into a multiple alignment, we first search for local
similarities shared by more than two sequences. Our approach is
based on the following observation: typically, local homologies
involving more than two sequences correspond to groups of
overlapping fragments (Fig. 1). In contrast, spurious random
similarities are rarely part of such fragment groups.

In our approach, we therefore search for groups of positions in
the sequences that are connected by many DIALIGN fragments.
In addition, we require each of these groups to contain at most
one position from each input sequence. Such groups are potential
(partial) columns of a biologically meaningful multiple alignment.
Consequently, the core of our new approach is to extract partial
alignment columns from the fragments produced by DIALIGN. If
the positions of the sequences are seen as vertices in a graph and we
have an edge between any two positions that are aligned by one of the
selected fragments, the core problem of our approach is to extract
highly connected subgraphs that contain at most one vertex from
each of the input sequences. We use a min-cut, max-flow algorithm
to identify such subgraphs.

The partial alignment columns that we find in this way need not
be consistent with each other. In a second step, we therefore use
a novel algorithm proposed by Pitschi (2008) to obtain a directed
acyclic graph (DAG) from our potential alignment columns. This
way, we obtain a consistent set of (partial) alignment columns. To
align those parts of the sequences that are not yet aligned by the
selected columns, we use these columns to define anchor points
for DIALIGN in order to find further sequence similarities that
are consistent with the partial alignment columns that we already
obtained with our graph-theoretical approach.

Test runs on BAliBASE and on simulated local sequence
homologies show that our approach is a considerable improvement
compared to previous versions of DIALIGN. Interestingly, the

Fig. 1. Two connected components of the incidence graphs for datasets
BB12001 (left) and BB50005 (right) from BAliBASE 3. The modular
structure of these graphs is obvious. While the entire graph is not connected
and rather sparse, it is composed of dense subgraphs. Typically, these
subgraphs involve at most one site from each of the input sequences, they
therefore represent partial alignment columns. The goal of the algorithm
described in Section 3.1 is to remove a minimal set of edges from GF such
that each of the resulting connected components contains at most one site
from every sequence.

numerical scores of our alignments are generally not better than
with the standard version of DIALIGN. This indicates, that it is not
the greedy optimization algorithm but rather the objective function
used in DIALIGN that is to be blamed for the known limitations of
this program on weakly but globally related sequence sets.

3 ALGORITHM
We consider a collection S of n sequences over a finite alphabet
where �(i) is the length of the i-th sequence. The site (i,p) is the
p-th position of the i-th sequence. The site space

S={(i,p)|1≤ i≤n,1≤p≤�(i)}
is endowed with a natural partial ordering ‘�’ such that (i,p)� (i′,p′)
holds if and only if i= i′ and p≤p′. By Si we denote the sites in
the i-th sequence, i.e. the set {(i,p)|1≤p≤�(i)}. In the following, we
freely identify the i-th sequence with the set Si. An alignment of S is
an equivalence relation A of S satisfying the following consistency
criterion: the preorder1 �A= (�∪A)t restricted to any individual
sequence s∈S coincides with �. Here, Rt denotes the transitive
closure of a relation R. The equivalence classes of A correspond to
columns of aligned positions of the sequences, and for any two sites
x,x′ ∈S, we have x�A x′ if and only if x is to the left or in the same
column as x′ in A.2

We call a subset C⊂S ambiguous, if there is a sequence Si
such that the intersection C∩Si contains at least two elements
(i,p) and (i,p′). In this case, we also call the sites (i,p) and (i,p′)
ambiguous with respect to C. A non-ambiguous subset C⊂S is

1By definition, a preorder is a transitive and reflexive relation on a set X.
2Note that the term consistency has been used in a different sense by various
authors, such as Gotoh (1990), Vingron and Argos (1991), Notredame et al.
(2000) and ourselves. This has led to some confusion in the literature.
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called a partial alignment column. Moreover, we call an equivalence
relation E on S ambiguous, if it contains an ambiguous equivalence
class. A non-ambiguous equivalence relation consists of partial
alignment columns only. Consistency of an equivalence relation
obviously implies non-ambiguity, but the converse is in general not
true.

In our approach to multiple alignment, we start with a set
F={f1,...,fn} of fragments. In the present study, F is the set of
fragments contained in the respective pairwise alignments produced
by DIALIGN, i.e. the union of all optimal chains of fragments from
all pairs of input sequences. However, for the algorithm described
below, the composition of F is not essential, and F could be any
set of fragments or other (partial) alignments. Thus, our first goal
is to extract a set of potential (partial) alignment columns Ci from
these fragments. Formally, we consider the equivalence relation E
induced by F , and we are looking for a non-ambiguous equivalence
relation E′ that is contained in E. In a graph-theoretical setting, we
consider sites as vertices in a graph and pair of sites aligned by our
fragments from F as edges. According to our above definition, we
call this graph non-ambiguous, if each of its connected components
contains at most one vertex from each of the input sequences. Our
goal is then to remove a minimal number of edges from GF to make
the resulting graph non-ambiguous.

3.1 The incidence graph of a set of fragments
For a set F of fragments as above, the incidence graph GF of F is
the undirected graph (S,EF ) where S is the set of sites of our input
sequences and a pair of sites forms an edge {u,v}∈EF if there exists
a fragment f ∈F such that u is aligned to v by f . The equivalence
classes of the equivalence relation induced by the fragment set F
are the connected components of GF .

As a rule, one observes that these components are extremely
modular. While the graph GF as a whole is sparse, it usually consists
of highly connected clusters of vertices, i.e. by dense subgraphs.
These subgraphs are typically linked to each other by only a small
number of edges (Fig. 1). Moreover, one can observe that these
dense subgraphs are often non-ambiguous, i.e. each cluster contains
at most one vertex per sequence. Thus, the well-connected clusters
of vertices in the graph GF are potential (partial) alignment columns
that we would like to include into a final MSA.

Our goal is therefore to turn the graph GF into a non-ambiguous
graph by removing some of its edges. This problem is equivalent
to clustering a coloured undirected graph, such that no cluster has
two vertices of the same colour. Whenever we detect an ambiguous
connected component C in our graph, i.e. a connected component
containing two vertices u and v from the same sequence, we partition
C into two subsets C1 and C2 by removing a minimal number of
edges such that we have u∈C1 and v∈C2. To this end, we consider
the subgraph G induced by C as a flow network and we use the max-
flow min-cut theorem, that we recall now. We repeat this procedure
until no ambiguous connected components are left.

3.2 Flow networks
A flow network N is a directed graph G= (V ,E) with two
distinguished vertices s and t—the ‘source’ and the ‘sink’—where
each edge (u,v) is assigned a non-negative real number, its ‘capacity’
c(u,v). Flow networks are used to model the situation where some
material, e.g. some fluid or current, can ‘flow’ from s to t along the

edges of the graph G. The capacity of an edge (u,v) can be thought
of as the maximum possible flow that goes directly from u to v. A
cut of a flow network is a partition V=S∪T with s∈S and t∈T .
The capacity c(S,T ) of a cut (S,T ) is the sum of the capacities of
all edges going from S to T .

A flow in a flow network N is an assignment of real numbers
f (u,v) to the edges (u,v) of N that can be interpreted as the actual
movement of material. The flow through any edge is bounded by its
capacity and the total incoming flow for any vertex must equal the
total outgoing flow, except for the source and the sink. The value |f |
of the flow f is defined as the total flow leaving the source, which
can be shown to equal the total flow entering the sink. Note that
for any flow f in N and any cut (S,T ) of N , we have c(S,T )≥|f |.
The maximum-flow problem is the problem of finding a flow f with
maximum value |f |. According to the max-flow min-cut theorem, a
flow f in N is maximal if and only if there is a cut (S∗,T∗) of the
network with c(S∗,T∗)=|f |. There are several known polynomial-
time algorithms to compute a maximum flow on a flow network, for
example, Ford and Fulkerson (1956) or Edmonds and Karp (1972)
(see also Cormen et al., 2001, pp. 651–664 ).

3.3 Step one: resolving ambiguities to construct partial
alignment columns

Let C be a connected component in GF containing two nodes x 
=y
from the same sequence. We turn C into a flow network N by defining
two directed edges (u,v) and (v,u) for any two nodes u and v that
are connected by an undirected edge in GF , i.e. are aligned by one
of the fragments in F , and we define the capacity of every edge to
be 1. The two ‘ambiguous’ nodes x and y are defined as the source
and the sink, respectively, of our flow network.

We then use the Edmonds–Karp algorithm to compute a maximum
flow fmax and we consider the so-called residual network N ′, which
is obtained from N by subtracting the maximum flow fmax from the
capacities of the edges, i.e. the capacity c′(u,v) in N ′ is defined
as c(u,v)−fmax(u,v). Edges (u,v) with capacity c′(u,v)=0 are
removed. Note that the capacity of each cut in N is at least |fmax|
and, according to the Edmonds–Karp theorem, there is a cut (S,T )
with capacity c(S,T )=|fmax|. Thus, in the residual network N ′ all
edges between S and T are removed and our ambiguous subgraph
G is split into two connected subgraphs by removing a minimal set
of edges from EF . We apply this algorithm successively to split
ambiguous subgraphs of GF by removing minimal sets of edges
from EF until GF is non-ambiguous.

One problem in our approach is that the connected components
of our incidence graph GF can be very large. We therefore define a
threshold k and apply the above graph algorithm only to those nodes
that have degree ≥k. We start with k=max{degv|v∈S} and k is
successively lowered until all nodes of GF have been considered.
A high-level description of our algorithm is as follows:

There are two subtleties left. (i) In general, a connected component
C of our incidence graph GF may contain multiple ambiguities:
there may be several input sequences each of which containing
two or more nodes from C. In this case, we need to decide,
in which order these conflicts are to be resolved. (ii) There
may be more than one minimal cuts of an ambiguous subgraph
C. In our implementation, we adopted the following procedure:
(i) In case there are several sequences involving ambiguous nodes
from C, choose the sequence Si involving the greatest number
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Algorithm 1 Ambiguity resolving algorithm

Input: GF = (S,EF )
k←max{degv|v∈S}
E←EF
while k≥0 do

Ek←{(u,v)∈E |min(degu,degv)�k}
Compute connected components of (S,Ek)
while there is an ambiguous connected component C of (S,Ek),
i.e. with vertices x,y from same sequence Si do

Compute connected components of (S,E)
while there is an ambiguous connected component C of
(S,E), i.e. with vertices x,y from same sequence Si do

1. Define flow network on C with x and y as source and
sink
2. Apply Edmonds-Karp to find minimal cut (C1,C2) of C
3. Remove edges between C1 and C2 from E

end while
end while
k←k−1

end while
return (S,E) non-ambiguous subgraph of GF

of ambiguous nodes. (ii) For the selected sequence Si, choose a
pair of vertices (x,y)∈Si such that x has the lowest possible degree
and y the highest possible degree, respectively. When computing
the min-cut, orient the flow by choosing vertex x as the source and
vertex y as the sink. (iii) If there are multiple minimal cuts of C,
define C1 as the connected component of the residual network N ′
containing x and C2 as its complement C\C1.

3.4 Step two: finding consistent sets of partial
alignment columns

The above described procedure returns a set C of partial alignment
columns. In general, however, these columns will not be consistent
with each other. Thus, we may have to further reduce the set C in
some way in order to obtain a consistent set of partial alignment
columns that we can use as a core of a multiple alignment of our
input sequences. To this end, we introduce another combinatorial
structure that will be used to identify the positions that are likely
responsible for the inconsistency. The succession graph of a set C of
partial columns is an edge-weighted directed graph SG(C)= (C,E,w)
where we have an edge e= (C,C′) if and only if there is a sequence
Si such that there are sites (i,p)∈C and (i,p′)∈C′ with p < p′ and
there is no partial column C′′ such that (i,p′′)∈C′′ and p < p′′< p′.
That is, we have an edge from C to C′ if there is at least one sequence
Si where C occurs to the left of C′, and no other partial column
occurs in Si between the occurrences of C and C′. The weight of
the edge (C,C′′) is then defined as the number of sequences Si with
this property. For convenience, we also add an initial vertex vstart
and a terminal one vend.

It is easy to see that a set C of partial alignment columns is
consistent if and only if the graph SG(C) is a DAG. To resolve
potential inconsistencies in our set C of partial alignment columns,
we use an algorithm that was originally introduced by Pitschi (2008).
Finding a consistent set of partial alignment columns amounts to
finding a set of partial columns whose succession graph is a DAG. To
turn our (possibly) inconsistent set of classes C into a consistent one,
we proceed in two steps: (i) successively remove the lowest weighted

edges from the graph SG(C) until all cycles have disappeared and
(ii) delete sites from the partial columns corresponding to the
suppressed edges to ensure that the succession graph of this new
set of partial columns is itself a DAG. The details of this algorithm
are to be found in Pitschi (2008), and will also be published in a
forthcoming paper (F. Pitschi et al., submitted for publication).

3.5 Constructing a final multiple alignment from
partial alignment columns

With the algorithms outlined in Sections 3.3 and 3.4, we obtain a
consistent set of partial alignment columns, that is an alignment
A in the sense of our above set-theoretical alignment definition. In
general, however, it will be possible to further extend this alignment.
In the sense of our set-theoretical alignment definition, there may
be an alignment A′ that is a proper superset of A. To find a suitable
extension A′ of A, we run DIALIGN by using our partial columns
as anchor points (Morgenstern et al., 2006). Here, anchor points are
considered as ungapped local pairwise alignments, i.e. as fragments
in the sense of DIALIGN. In general, the user can specify a set
of potential anchor points with user-defined weights from which
DIALIGN selects a consistent subset in a greedy way based on their
weights. In our case, we can use any set of anchor points representing
our selected partial alignment columns, without worrying about their
weights, since our set of anchor points is consistent anyway.

To study the influence of the two steps of our approach described
in Sections 3.3 and 3.4, respectively, we tested a second version of
our method where we only performed the first step as described in
Section 3.3 to calculate non-ambiguous connected sets of sites. Here,
we use these partial alignment columns directly to define anchors for
DIALIGN, without first selecting a consistent set of partial columns.
So in this case, DIALIGN may have to reject some of the anchors
in order to ensure that a consistent set of anchors is used. Therefore,
a weight needs to be defined for each of the anchor points, and
the proposed anchor points are selected greedily according to these
weights. Thus, the resulting alignment depends on how the weights
of the anchor points are exactly defined.

To obtain a set of anchor points from a set C of partial alignment
columns, we consider all maximal pairs of segments (i,p),...,(i,p+
k) and (i′,p′),...,(i′,p′+k) such that every pair of sites (i,p+l) and
(i′,p′+l),1≤ l≤k, belongs to some partial alignment column in C.
Each of these segment pairs (fragments) defines an anchor point.
We defined the weights of these anchor points in two different ways,
namely (i) by their length and (ii) by using the fragment-weighting
function that is used in DIALIGN (Morgenstern, 1999).

3.6 Time complexity
Since the time complexity of the Edmonds–Karp algorithm depends
quadratically on the number of nodes of the input graph, the run
time of our method strongly depends on the size of the connected
components of our incident graphs. In the worst case, there is a single
connected component comprising the entire site space S and each
node (i,p) is connected to each sequence Sj 
=Si by some edge. Thus,

a single connected component has up to n ·� nodes and n2 ·� edges
where n is the number of sequences and � their maximum length. The
time complexity of the Edmonds–Karp algorithm is O(|V |·|E|2), so
the worst-case complexity of our algorithm to find a minimal cut
for a single ambiguous connected component is O(n5 ·�3). In the
worst case, each run of Edmonds-Karp splits off a single node, so
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the algorithm is run n ·� times. The worst-case time complexity of
our full algorithm is, therefore, O(n6 ·�4).

For realistic datasets, the connected components of our incidence
graphs are, fortunately, much smaller than in the theoretical worst
case, so we could run our method on most datasets in the benchmark
databases in reasonable time. An example is reference set RV12 of
BAliBASE. RV12 consists of 88 sequence families with an average
of 10 sequences per sequence family. The average incidence graph
GF in RV12 consists of 2877 nodes 10 952 edges and 223 connected
components and, on average, the Edmonds–Karp algorithm is run
649 times, thereby removing 899 edges. On RV12, the mean CPU
time per sequence family is 48 s on an Opteron machine with
2.4 GHz.

As will be discussed in Section 4.1, we had to terminate the
program runs on some large sequence families from BAliBASE.
To obtain results with our method in reasonable time, we applied
a threshold T and removed all fragments f with weight scores
w(f )<T from F . An extreme case was sequence family BB30003
from BAliBASE. This sequence set comprises 142 sequences, and
the incident graph consists of one single connected component with
around 1.5×106 edges. We aborted the program run on this dataset
after 20 h without results. With a threshold of T=4, the graph still
consists of more than 8.3×105 edges, and we obtained a multiple
alignment of these 142 sequences after 13 h.

4 TEST RESULTS
To evaluate the performance of our method, we used three benchmark
databases for multiple alignment. For global protein alignment, we used the
well-known database BAliBASE 3 developed by Thompson et al. (2005); for
local alignment, we used the databases IRMBASE (for protein alignment)
and DIRMBASE (for DNA alignment) developed by Subramanian et al.
(2005, 2008). All reference sequence sets from these three databases contain
so-called core-blocks for which a correct alignment is known.

The performance of alignment programs can be measured in two different
ways: the SPs score measures the proportion of pairs of sites in the core
blocks of the reference alignment that are correctly aligned by the method
under evaluation. The total column (TC) score measures the proportion of
alignment columns from the core blocks that are correctly aligned. The
total column score is a more stringent measure, and it can be applied in
a meaningful way only to those benchmark sequences where the core blocks
involve all of the input sequences. We used the program aln_compare
(Notredame et al., 2000) to calculate these scores. Note that both, SP and
TC scores, measure the sensitivity of alignment methods. In BAliBASE, we
only used the non-truncated long versions of the reference sequence sets.

We evaluated two versions of our software. In a first set of test runs,
we only used our min-cut algorithm to resolve ambiguity conflicts in
the fragment set F and constructed sets of partial alignment columns as
explained in Section 3.3. Note that these sets of partial alignment columns
are not necessarily consistent. Anchor points were extracted from these data
as outlined in Section 3.5 and given to DIALIGN. In a second set of test
runs, the set of partial alignment columns was further processed as outlined
in Section 3.4 to obtain a consistent set of partial alignment columns that
were directly given to DIALIGN as anchor points.

4.1 Global alignment benchmark: BAliBASE 3
Tables 1 and 2 summarize the performance of our method on BAliBASE 3.
On all six reference sets of BAliBASE, both versions of our approach
consistently achieve a considerable improvement over the standard version
of DIALIGN. This is true for both, SP and TC scores. For the TC score,
however, the improvement is most substantial. It also becomes clear from

Table 1. Performance of our min-cut method compared with other MSA
methods on reference sets RV11 to RV50 in BAliBASE 3 based on an SP
evaluation scheme

RV11 RV12 RV20 RV30 RV40 RV50

min-cut, cons. PAC 53.14 88.53 90.51 78.56 87.67 86.45
min-cut, all PAC 50.61 88.36 90.07 78.19 87.21 85.58
DIALIGN-TX 51.52 89.18 87.88 76.18 83.64 82.28
DIALIGN 2.2 50.73 86.66 86.92 74.05 83.31 80.69
CLUSTALW 2.0 49.27 86.89 86.23 70.71 79.65 70.56
MAFFT 6.717b 66.19 93.36 92.72 87.08 92.19 90.25
MUSCLE 3.7 57.16 91.54 88.91 81.45 86.49 83.52
PROBCONS 1.12 66.97 94.12 91.68 84.53 90.34 89.41
T-COFFEE 7.81 66.77 94.08 91.62 83.81 89.96 89.43

We used the (possibly non-consistent) partial alignment columns produced by our
min-cut algorithm (all PAC) as discussed in Section 3.3. The resulting anchor points
are sorted according to their length. As an alternative, we selected consistent partial
alignment columns before using them as anchor points (cons. PAC) as outlined in
Section 3.4.

Table 2. Performance on BAliBASE 3 based on the TC score

RV11 RV12 RV20 RV30 RV40 RV50

min-cut, cons. PAC 30.51 73.99 35.21 41.01 50.17 50.90
min-cut, all PAC 28.82 74.07 34.07 40.05 47.54 49.27
DIALIGN-TX 26.81 75.69 30.78 38.90 45.17 47.05
DIALIGN 2.2 26.84 70.03 29.71 31.62 44.53 42.94
CLUSTALW 2.0 24.00 72.32 20.44 26.87 40.04 34.21
MAFFT 6.717b 44.13 83.83 45.46 58.90 60.56 59.52
MUSCLE 3.7 32.06 80.90 35.30 41.19 45.32 46.39
PROBCONS 1.12 41.96 86.05 41.15 54.73 53.61 57.89
T-COFFEE 7.81 42.65 85.71 39.21 49.99 56.30 59.11

Notation as in Table 1.

Table 1 that the second part of our method achieves a further improvement.
This holds, again, for all six reference sets and for both, SP and TC
measures of alignment quality. Thus, resolving consistency conflicts before
partial alignment columns are used as anchor points for DIALIGN gives
consistently better results than using the partial alignment columns directly,
after resolving the ambiguity conflicts as in Section 3.3.

It must be noted that for some of the sequence sets from BAliBASE 3,
the incidence graphs proved too large for the current implementation of our
max-flow min-cut algorithm. In particular, this was the case for some data
families in reference set RV30; here, the incidence graphs consisted of up to
1.5 million edges. For these reasons, we could apply the algorithm described
in Section 3.3 only to 359 out of 386 sequence families in BAliBASE.
To align the remaining sequences, we filtered their incidence graphs by
considering only those fragments that have a DIALIGN weight greater than a
certain threshold T . At a value T=4, all datasets could be processed, whereas
for the lower values, some could not. Figure 2 shows the influence of this
threshold on the quality of the produced alignments on BAliBASE.

Finally, we studied how the numerical scores of our min-cut alignments
compare to the ones of the standard DIALIGN alignments on BAliBASE.
In the DIALIGN approach, the score of an alignment is defined as the sum
of the weights of the fragments it consists of. The weight of a fragment is
defined as the negative logarithm of the probability of finding a fragment of
the same length with at least the same sum of amino acid substitution scores
in random sequences of the same length as the input sequences (Morgenstern,
1999). The results of this comparison are shown in Table 3.
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Fig. 2. Variation of the SP score improvement with consistent columns on
BAliBASE 3 according to the threshold for selecting DIALIGN fragments.

Table 3. Numerical alignment scores in the sense of the DIALIGN objective
function on BAliBASE for DIALIGN 2.2 and our min-cut approach using
consistent partial alignment columns as anchor points for DIALIGN

RV11 RV12 RV20 RV30 RV40 RV50

DIALIGN 2.2 267 3703 113 867 70 220 27 680 28 291
min-cut 255 3758 114 174 68 555 26 099 27 855

4.2 Local alignment benchmarks: IRMBASE2 and
DIRMBASE1

Since BAliBASE and other standard alignment benchmark data consist
almost exclusively of sequence families that are globally related, i.e.
with similarity extending over the entire length of the sequences,
we additionally used benchmark databases for local protein and DNA
alignment, namely IRMBASE 2 and DIRMBASE 1. Following an approach
first proposed by Lassmann and Sonnhammer (2002), these databases consist
of simulated protein and DNA sequence families, respectively. Locally
conserved sequence motifs created using the ROSE software program (Stoye
et al., 1998) are inserted into non-related random sequences.

IRMBASE and DIRMBASE consist of four reference sets each with
randomly implanted ROSE motives. Unlike the core blocks in BAliBASE,
these motifs do not necessarily span all sequences in a reference sequence
family. Thus, the TC score cannot be defined in a meaningful way and is,
therefore, not considered in this study. Table 4 contains the results of our test
runs. On the simulated local protein homologies in IRMBASE, our results
were comparable to the results of DIALIGN 2.2 and DIALIGN-TX. On
the locally related DNA sequences in DIRMBASE our min-cut approach
performed worse though. On all locally related benchmark data, however,
our method outperformed the global aligners, with the remarkable exception
of MAFFT (Katoh et al., 2005), which consistently performed well on global
and local sequence data.

5 DISCUSSION
In this article, we introduced a new way of composing MSAs from
local pairwise alignments. We first use DIALIGN to construct all
optimal pairwise alignments in the sense of Morgenstern et al.
(1996), i.e. for each sequence pair, we search for a chain of fragments
with total maximum weight. Unlike DIALIGN, however, we do not
include these fragments directly into a multiple alignment. Instead,
we use a graph-theoretical approach to obtain potential (partial)
alignment columns based on the DIALIGN fragments. To align

Table 4. Results on the local benchmark databases DIRMBASE 1 (D1–D4)
and IRMBASE 2 (I1–I4)

Dataset I1 I2 I3 I4 D1 D2 D3 D4

min-cut, cons. PAC 90.7 92.8 92.9 92.5 76.4 75.3 78.5 81.7
min-cut, all PAC 91.8 89.7 90.8 93.1 75.3 75.2 79.8 81.1
DIALIGN-TX 1.0.2 89.4 94.9 93.8 93.6 94.4 92.9 95.4 95.7
DIALIGN 2.2 90.4 93.4 91.8 93.0 92.6 91.1 94.6 94.1
CLUSTALW 2.0 9.3 12.4 19.6 29.1 10.7 9.8 15.6 22.5
MAFFT 6.717b 87.7 92.0 89.9 88.3 92.5 83.7 87.3 86.5
MUSCLE 3.7 30.4 34.5 54.0 57.8 47.3 53.2 56.0 67.7
PROBCONS 1.12 78.8 85.7 87.1 87.7 29.9 31.3 41.5 52.9
T-COFFEE 7.81 82.1 89.4 89.6 91.3 8.6 8.8 17.7 32.0

These databases consist of simulated sequences with local homologies in otherwise
unrelated sequences. Notation as in Table 1.

the remainder of the sequences, we use these partial columns as
anchor points in DIALIGN. Thus, the major difference between our
approach and the original version of DIALIGN is the fact that we use
local multiple sequence similarities rather than pairwise similarities
as a basis for MSA.

The restriction to local pairwise similarities as building blocks for
multiple alignment is a major drawback of DIALIGN. DIALIGN
is one of the best methods for local multiple alignment. It also
produces good global alignments if sequences are related over their
entire length. For sequences with weak global sequence similarity,
however, DIALIGN is often outperformed by global alignment
methods. With the new approach that we proposed, we focus on
local similarities that span more than two sequences; this seems
to be a promising way to overcome the current limitations of
DIALIGN.

Approaches to multiple alignment have two basic components:
an objective function assigning quality scores to possible alignments
and an optimization procedure for finding high-scoring alignments
in the sense of the chosen objective function. Thus, the failure of
an alignment program to produce reasonable alignments can have
two reasons: the objective function may assign optimal scores to
biologically wrong alignments, or the optimization algorithm may
fail to find a (near-)optimal alignment. In Table 3, we compared the
numerical scores of the improved alignments calculated with our
new method to the scores of the standard DIALIGN alignments.
In four out of six reference sets in BAliBASE, the DIALIGN
alignments have on average higher numerical scores than the
biologically superior alignments produced by our new approach.
This clearly demonstrates that the objective function currently used
in DIALIGN is flawed. Possible reasons for the shortcomings
of this objective function are discussed in Subramanian et al.
(2005).

Thus, it is unlikely that DIALIGN can be further improved
by applying more efficient optimization algorithms on the basis
of the current objective function. Instead, it seems worthwhile
to investigate novel objective functions for the segment-based
alignment problem. Probabilistic approaches may provide a way of
optimising the weight parameters used by DIALIGN, for example,
by using conditional random fields. Also, it seems worthwhile to
use (partial) multiple local alignments instead of pairwise fragments
as building blocks for MSA and to develop improved objective
functions based on such partial multiple alignments.
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