
PERGAMON Applied Mathematics Letters 15 (2002) 11-16

Applied
Mathematics
Letters

www.elsevier.com/locate/arnl

A Simple and Space-Efficient
Fragment-Chaining Algorithm for

Alignment of DNA and Protein Sequences

B. MORGENSTERN
GSF-National Research Center for Environment and Health

Institute of Biomathematics and Biometry
Ingolst%dter Landstr. 1, 85764 Neuherberg, Germany

and
Aventis Pharma Limited

Rainham Road South, Essex RILllO 7XS, U.K.

(Received February 2001; accepted March 2001)

Communicated by A. Dress

Abstract-In the segment-based approach to sequence alignment. nucleic acid, and protein se-
quence alignments are constructed from fragments, i.e., from pairs of ungapped segments of the input
sequences. Given a set F of candidate fragments and a weighting function w : F + FL:, the score
of an alignment is defined as the sum of weights of the fragments it consists of. and the optimiza-
tion problem is to find a consistent collection of painuzse dislomt fragments wzth nmxin~um swn
of wezghts. Herein, a sparse dynamic programming algorithm is described that solves the pairwise
segment-alignment problem in O(L + Nmax) space where L is the maximum length of t,he input
sequences while N ,nax 5 #F holds. With a recently introduced weighting function 1~. small sets F
of candidate fragments are sufficient to obtain alignments of high quality. As a result, the proposed
algorithm runs in essentially linear space. @ 2001 Elsevier Science Ltd. All rights reserved

Keywords-Sequence alignment, String algorithm, FYagment chaining, Dynamic programming,
Complexity.

1. INTRODUCTION

Sequence alignment is a fundamental problem in molecular bioinformatics. The goal is to develop

computer programs that produce biologically meaningful alignments. This requires

(a) an appropriate objective function P assigning a quality score to every possible alignment

of a given sequence set, and

(b) an efficient algorithm capable of finding P-optimal or near-optimal alignments.

Most standard alignment programs are based on the NIV-objective function that had been pro-

posed in 1970 by Needleman and Wunsch [I]. They defined the score of a pairwise alignment as

Present address: MIPS, Max-Planck-Institut fiir Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany.
1 would like to thank A. Dress and S. Kurtz for helpful comments on the manuscripts.

0893-9659/01/$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. Typeset by AM-‘&X
PII: SO893-9659(01)00085-4

12 ES. ~IORGENSTERN

the sum of individual similarity scores of aligned residue pairs from which a penalty is subtracted

for every gap introduced into the sequences.

Unlike these methods, the program DIALIGN constructs pairwise and multiple alignments of

nucleic acid and protein sequences from ungapped pairs of sequence segments [2]. Such segment

pairs are referred to as (alignment) fragments, and a pairwise alignment can be defined as a chain

of fragments fi << . < fk where fi << fJ means that, in both sequences, the end positions

of f, are strictly smaller than the respective beginning positions of fJ. Note that fragments may

contain mismjatches and may have varyin g length. In order to find ‘good’ alignments, every

possible fragment f is given a nonnegative score w(f) reflecting the degree of similarity among

the two segments, and the overall score of an alignment is defined as the sum of fragment scores.

Thus, for pairwise alignment, our optimization problem is to find a chain of fragments with

maximal overall score. In the DIALIGN approach, such optimal pairwise alignments are also

t,hc first step for a greedy multiple-alignment procedure [3:4]; they are also used in alternative

multiple-alignment procedures [5,6].

There are well-known algorithms that solve this problem. If a set F of admissible fragmerus is

kmw71, the problem can be solved in O(#F) p s ace [7], so if the set F is generat,ed in a first step,

the whole problem can be solved in O(L+#F) space where L is the length of the longer sequence.

Chao and Miller [8] proposed an efficient algorithm for the case where maximal pairs of identical

segments are considered and an affine penalty is charged for connecting two fragments. By

combining a sparse dynamic programming algorithm by Eppstein et al. [9] with Hirschberg’s [lo]

and Myers and Miller’s [ll] divide-and-conquer approach, they obtained an algorithm that runs

in space proportional to the length of the input sequences. Recently, we outlined a much simpler

fragment-chaining algorithm for the caSe where general gap-free segment pairs are allowed and

gaps between fragments are not penalized [la]. Herein, this algorithm is described in detail. Its

rrjorst-case space complexity is discussed, and some techniques are proposed to improve its real

sptce efficiency.

2. PRELIMINARIES

It is well known that for two sequences a = a1 . . . aL1 and b = bl . bL2, an NW-optimal

alignment can be calculated in two steps: first, for all positions (i. j) in the comparison mat,rix

(i,.Yj) _ _ 1<1<L1.1<J<L2, the score Sc[i, j] of an optimal aligmnent of the prefixes a,1 a, and bI b, _ _
is calculated recursively from the values Sc[i,j - k]. Sc[i - k,j], k > 1, and Sc[i - 1,j - l] using

equation

{

maxk/i{Sc[i,.? - kl - g(k)},

Sc[i, j] = max maxk/i{Sc[i - k,j] - g(k)},

1

(1)

Sc[i - 1,j - l] + ~(a,, b3)}.

Here, g(k) is the penalty for a gap of length k, and ~(a,, bj) is the score for aligning ai and b,. Dur-

ing the recursive procedure, one has to store at every position (i, j) where the optimal alignment

of the prefixes al . ai and bl b, ‘comes from , ’ i.e., if a, is aligned to b, or if uZ or b, are aligned

to a gap of a certain length. This allows, in a second step, to find an optimal Needleman-Wunsch

alignment of the sequences a and b by a back-tracing procedure.

It is important to bear in mind that both the recurrence formula and the back-tracing pro-

cedure rely on the additivity of the NW-function: if it is known that ai is aligned to bJ in an

optimal alignment of the prefixes ai . a, and bl . . bj, then the score of this alignment is the

corresponding score for the prefixes ai . a,_1 and bl . . b,_l plus the similarity value ~(a,, b,);

t,he same holds for residues that are aligned to gap characters. This fact is used in the first

(recursive) part of the algorithm. Moreover, if one knows that u, is aligned to bj in an optimal

alignment of the sequences a and b, then it is possible to calculate how the prefixes al . . a, and

01 0, are aligned without knowing the sufixes a,+1 UL~ and bj+l bLZ. This allows in the

Space-Efficient Fragment-Chaining Algorithm 13

second (back-tracing) part of the algorithm to construct an optimal alignment of a and b using

the information gained during the first part of the algorithm.

In our segment-based approach, this additivity does not hold--to be precise, the objective

function we are using is additive at the level of segment pairs but not at the level of individual

residue pairs. As mentioned in [2] the score Sc[i, j] of an optimal segment-to-segment alignment

of the prefixes al . . a, and bl . . . bj can be calculated from the values Sc[i, j - l], Sc[i - 1, j],

Sc[i - 1, j - I], 1 2 1, and the weights of the fragments ending in (i, j). Note that in this context,

Sc[i, i] refers, of course, to our fragment-based objective function rather than to the Needleman-

Wunsch scoring scheme. For our fragment-chaining problem, the direct analogue to formula is

{

Sc[i,j - 11,
Sc[i,j] = max Sc[i - l,j],

1

(2)
maxl>l{Sc[i - l,.i - 11 + w(fi,j,l)},

where f%,j,l denotes the fragment of length 1 ending in (i,j). In a previous paper, we used equa-

tion (2) to define a straight-forward dynamic-programming procedure that solves the fragment-

chaining problem [2]. S ince here, the values Sc[i,j] need to be stored for the entire dynamic-

programming matrix simultaneously, the space complexity of this part of the algorithm was OL’.

In order to describe a more space-efficient algorithm, we first introduce some more definitions.

For a fragment f E F, we define

(3)

where the maximum is taken over all possible chains ending in f. If fl < . . . < fK is a chain

reaching the maximum in equation (3), we call P(f) = fK_1 the predecessor of f. Finally, we

define Pr[i, j] to be the last fragment in an optimal chain of the prefixes al . a, and bl . . bjl,

so for a fragment f starting in (i, J’), we have

W(f) = Sc[i - 1,j - l] + w(f),

P(f) = Pr[i - 1,j - 11,

Sc[i,j - 11,

Sc[i, j] = max Sc[i - l,j],

max{W(f) : f ending in (i,j)},

(4)

(5)

(6)

and Pr[i, j] can be established together with Sc[i,j] depending on where the maximum in equa-

tion (6) is reached as

Pr[i,j - 11, if Sc[i,j] = SC[i,j - 11,
Pr[i,j] = Pr[i - l,j], if Sc[i,j] = Sc[i - l,Jl, (7)

L if Sc[i,j] = max{W(f) : f ending in (&J’))(*),

where f^ is a fragment maximizing (*).

Once Sc[i, j] and Pr[i,j] h ave been calculated for all positions (i, j) in the comparison matrix,
a fragment fmax with W(fmax) = max{W(f), f E F} is given as fmax = Pr[Ll, Lz]. Now, a
trace-back procedure can be used to find an optimal fragment chain by defining

fo = fmax and fk+l = P(fk)r k 2 0. (8)

‘Strictly spoken, P(f) and Pr[i,j] are not well defined since there may be several fragments with these properties.
For our algorithm, however, this ambiguity is irrelevant.

14 B. MORGENSTERN

3. SPACE-EFFICIENT FRAGMENT CHAINING

In this section, a sparse dynamic-programming algorithm is described that finds an optimal

fragment chain in O(L + iv,,,) space where N,,,, is a number that is upper-bounded by #F but,

is in practical applications far smaller than #F. The comparison matrix is processed column-by-

column from the lower-left to the upper-right corner. At every position (i, j), fragments stnrti~rg

at (i, j) are considered, and for each fragment f E F, equations (4) and (5) are used t,o establish

W(f) and p(f). To do so, Sc[i - 1,j - l] and Pr[i - l,j - I] 1 lave to be known. The central idea

behind our algorithm is to store these values not for the entire comparison matrix simultaneously,

but only for one column at a time, so SC and Pr are encoded as one-dimensional arrays rather

than as two-dimensional matrices. Before the fragments starting in column i + 1 are processed,

Sc(i,j] and Pr[i,j] are established for all 1 < j 5 L2 according to equations (6) and (7) using the

corresponding values from column i - 1 together with the sets of all fragments r~rdl.ng in (i. j).

Therefore, by the time the algorithm reaches column i, W(f) and P(f) have to be know for all

fragments ending in this column.

To this end, once a fragment f has been processed, i.e., once W(f) and p(f) have been

established, a pointer to f is added to a list F,J that, is associated with the column i’ where ,f is

ending. By the time fragments starting in column i + 1 are processed, the set F, of all fragments

f E F ending in column i is therefore already known and can be used to calculate Sc[i..j] and

Pr[i,j], 1 5 j 5 Lz. Once these values have been established, the corresponding values for

column j can be deleted. After the whole dynamic-programming matrix has been processed in

this way, the score Sc[Ll, Lz] of an optimal fragment chain of the input sequences a and b is

known as well as the last fragment Pr[Ll, Lz] of this chain, and the optimal chain itself can be

found by the trace-back procedure (8).

During the described procedure, the values of Pr and SC are stored for one column at a t,ime.

In addition, the sets F,, 1 < i < L1 are to be stored, so in the worst case, our algorithm requires

computer memory proportional to L + C, #FT. = L + #F.

for j c 0 to L2 do

Sc[O,j] + 0

for i t 1 to L1 do

for j +- 1 to L2 do

for all f E F starting in (i, j) do

W(f) + w(f) + Sc[i - l,j - l]

P(f) + Pr[i - 1,j - l]

Fif + Fi, U {f} where i’ is the column where f is ending

delete Sc[i - l,j] and Pr[i - l,j]

Sc[i - l,j],

Sc[C jl +- max Sc[i, j - 11, (*)
max{W(f) : f ending in (i,j)}

establish Pr[i,j] depending on what the maximum in (*) is.

for all f E F ending in (i,j) with f # Pr[i,j] do

delete f

delete Sc[i - l,j] and Pr[i - l,j]

f0 + Pr[-h, ~521
while fk # NIL do /* trace back */

h+1 + wk++)

Figure 1. Dynamic programming algorithm that calculates fragment chain fo <
< fK maximizing c, w(fi) for two Sequences of length L1 and &.

Space-Efficient Fragment-Chaining Algorithm 15

It is, however, not necessary to store the entire sets Fi simultaneously. Fi is needed to establish

Sc[i, J’] and Pr[i, ~‘1, 1 5 j 5 L2, so if only the score of an optimal fragment chain is to be calculated,

F, can be deleted as soon as Sc[i, j] and Pr[i,j] are known. In order to retrieve an optimal chain

by the described trace-back procedure, those fragments need to be retained that are potentially

contained in this chain. A fragment f can belong to the optimal output chain only if f = Pr[i, j]

holds for some position (i, j) in the comparison matrix which is the case precisely if f = Pr[i’, j’]

holds for the position (i’, j’) where f is ending. Thus, as soon as Sc[i, j] and Pr[i, j] are calculated

for a position (i, j), all fragments ending in (i, j) can be deleted except for Pr[i, j]. The real space

complexity of our algorithm is therefore O(L+N,,,,) where N,,,,, < #F is the maximum number

of fragments that are stored simultaneously during the dynamic-programming procedure.

Since only fragments with positive weights need to be taken into consideration, F depends, in

turn, on the weighting function w. We are considering the function w used in the DIALIGN 2

program which is defined as follows: for a fragment f, S(f) is defined as the sum of similarity

values of aligned residue pairs, and p(f) denotes the probability of finding a fragment of the same

length as f with at least the same sum S(f) o similarity values in a pair of random sequences f

of the same length as the input sequences a and b. The weight score of f is then defined as

,w(f) = - lnp(f).

It is clear that even for closely related sequences, the vast majority of fragments f in the

comparison matrix are unrelated segment pairs with a sum of similarity values S(f) not far from

the expectation value. Since the probability J’(f) of fi d n ing such a fragment in a pair of random

sequences is (very close to) 1, the weight of a random fragment will be E -In 1 = 0, so these

fragments need not be considered for alignment. The set F is further reduced if a threshold T is

employed such that only those fragments are considered for alignment that have a weight greater

than T.

Moreover, the output of our algorithm is not affected if one ignores all fragments f that properly

contain a fragment f’ with w(f’) > w(f).’ W e call a fragment f with this property redundant.

Obviously, if a redundant fragment f belongs to a chain A, then replacing f by f’ results in a

chain A’ with a score at least as high as A. While it would be time-consuming to identify and

exclude all redundant fragments, there are simple ways of excluding a substantial part of them

without increasing the running time of the algorithm.

(a) Fragments starting at a position (i,j) are processed in order of increasing length, and a

fragment is considered for alignment only if its weight exceeds the maximum weight so far

of a fragment starting at (i, j).

(b) With our weighting function, a fragment f is redundant whenever its first (or its last)

residue pair has the lowest possible similarity value-it is easy to see that omitting this

residue pair would result in a fragment f’ contained in f with w(f’) > w(f).

Therefore, for nucleic acid sequences only fragments starting with a match have to be considered.

For proteins, one may define a threshold s,in and ignore all fragments with an initial similarity

value smaller than s,in.

Finally, one may limit the length of fragments under consideration. In DIALIGN, the maximal

length for fragments is I,,,, = 40 residue pairs. While this clearly deteriorates the numerical

score of the resulting output alignments-i.e., the sum of the respective fragment weights-their

biological quality is unlikely to be affected. Usually, the length of conserved protein domains

is far smaller than 40 residues, so only for closely related sequences, high scoring fragments of

more than 40 residues in length can be expected. In these situations, however, long fragments in

‘biologically correct’ alignments can be replaced by consecutive shorter fragments, and ‘correct’

alignments are still likely to have relatively higher scores than alternative ‘wrong’ alignments. To

‘We say that f’ is contained in f if all residue pairs aligned by f’ are also aligned by f-with our previously

introduced definition of (partial) alignments as equivalence relations [2,13], this is the usual set-theoretical inclusion

relation.

1G B. MORGENSTERN

test the influence of these parameters, we have performed systematic test runs on the BAliBASE

data base of benchmark alignments [14]. With parameter values T = 0.5, S,in = 8, 1,,,, = 30,

the size of the set F was reduced by 81% compared to the results with default parameters

T = 0, Smill = 4, I,,,, = 40, while the quality of the output alignments was reduced only

by 2.2%.

The number of fragments considered for alignment depends on the degree of similarity among

the input sequences. In order to obtain lower and upper estimates for #F and N,,,,,, we aligned

extreme dissimilar as well as extreme similar test sequences, namely pairs of independent random

DNA sequences and pairs of identical random sequences using DIALIGN with default parameters,

i.e., with a threshold T = 0 for fragment weights and with a maximum fragment length of

I,,,,,, = 40. For independent random sequences, #F and N,,,, were negligible compared to L

while for identical sequences, N,,, was in the order of L x l,,, [12]. Comparison of these results

shows that for identical sequences, the vast majority of fragments are contained in the main

diagonal of the comparison matrix, so their number will grow approximately linearly with the

sequence length.

REFERENCES

I. S.B. Needleman and C.D. Wunsch, A general method applicable to the search for similarities in the amino

acid sequence of two proteins, J. Mol. Biol. 48, 443-453, (1970).
2. B. Morgenstern, A.W.M. Dress and T. Werner, Multiple DNA and protein sequence alignment based on

segment-to-segment comparison, Proc. N&l. Acad. Sci. USA 93, 12098-12103, (1996).
3. B. Morgenstern, DIALIGN 2: Improvement of the segment-to-segment approach to multiple sequence align-

ment, Bzoinfonnatics 15, 211-218, (1999).
4. S. Abdeddai’m and B. Morgenstern, Speeding up the DIALIGN multiple alignment program by using the

‘greedy alignment of biological sequences library’ (GABIOS-LIB), In Proceedings of the Jowne’es Ouuertes:
Brologze, Informatique et MathCmatiques (JOBIM), Lecture Notes in Computer Sczence, (in press).

5. H.-P. Lenhof, B. Morgenstern and K. Reinert, An exact solution for the segment-to-segment multiple sequence
alignment problem, Bioinformatics 15, 203-210, (1999).

6. J.D. Kececioglu, H.-P. Lenhof, K. Mehlhorn, P. Mutzel, K. Reinert and M. Vingron, A polyhedral approach

to sequence alignment problems, Dzscrete Applied Mathematics 104, 143-186, (2000).
7. J.W. Wilbur and D.J. Lipman, Rapid similarity searches of nucleic acid and protein data banks, Proc. Natl.

Acad. Sci. USA 80, 726-730, (1983).
8. K-M. Chao and W. Miller, Linear-space algorithms that build local alignments from fragments, Algorithmica

13, 106-134, (1995).
9. D. Eppstein, 2. Galil, R. Giancarlo and G. Italiano, Sparse dynamic programming I: Linear cost functions,

.J. Assoc. Comput. Mach. 39, 519-545, (1992).
10. D.S. Hirschberg, A linear space algorithm for computing maximal common subsequences, Commw. ACM

18, 314-343, (1975).
11. E.M. Myers and W. Miller, Optimal alignments in linear space, CABIOS 4, 11-17, (1988).
12. B. Morgenstern, A space-efficient algorithm for aligning large genomic sequences, Bioinformatics 16, 948-949.
13. B. hlorgenstern, J. Stoye and A.W.M. Dress, Consistent equivalence relations: A set-theoretical framework

for multiple sequence alignment, Materialien und Preprints 133, University of Bielefeld, (1999).
14. J.D. Thompson, F. Plewniak, and 0. Poch, BAliBASE: A benchmark alignment database for the evaluation

of multiple sequence alignment programs, Bioinformatics 15, 87-88, (1999).

